• Title/Summary/Keyword: Connectivity feature

Search Result 56, Processing Time 0.022 seconds

Management strategy through analysis of habitat suitability for otter (Lutra lutra) in Hwangguji Stream (황구지천 내 수달(Lutra lutra) 서식지 적합성 분석을 통한 관리 전략 제안)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 2024
  • Otters, designated as Class I endangered wildlife due to population declines resulting from urban development and stream burial, have seen increased appearances in freshwater environments since the nationwide ban on stream filling in 2020 and the implementation of urban stream restoration projects. There is a pressing need for scientific and strategic conservation measures for otters, an umbrella and vulnerable species in aquatic ecosystems. Therefore, this study predicts potential otter habitats using the species distribution model MaxEnt, focusing on Hwangguji Stream in Suwon, and proposes conservation strategies. Otter signs were surveyed over three years from 2019 to 2021 with citizen scientists, serving as presence data for the model. The model's outcomes were enhanced by analyzing 'river nature map' as a boundary. MaxEnt compared the performance of 60 combinations of feature classes and regularization multipliers to prevent model complexity and overfitting. Additionally, unmanned sensor cameras observed otter density for model validation, confirming correlations with the species distribution model results. The 'LQ-5.0' parameter combination showed the highest explanatory power with an AUC of 0.853. The model indicated that the 'adjacent land use' variable accounted for 31.5% of the explanation, with a preference for areas around cultivated lands. Otters were found to prefer shelter rates of 10-30% in riparian forests within 2 km of bridges. Higher otter densities observed by unmanned sensors correlated with increasing model values. Based on these results, the study suggests three conservation strategies: establishing stable buffer zones to enhance ecological connectivity, improving water quality against non-point source pollution, and raising public awareness. The study provides a scientific basis for potential otter habitat management, effective conservation through governance linking local governments, sustainable biodiversity goals, and civil organizations.

An Edge Enabled Region-oriented DAG-based Distributed Ledger System for Secure V2X Communication

  • S. Thangam;S. Sibi Chakkaravarthy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2253-2280
    • /
    • 2024
  • In the upcoming era of transportation, a groundbreaking technology, known as vehicle-to-everything (V2X) communication, is poised to redefine our driving experience and revolutionize traffic management. Real-time and secure communication plays a pivotal role in V2X networks, with the decision-making process being a key factor in establishing communication and determining malicious nodes. The proposed framework utilizes a directed acyclic graph (DAG) to facilitate real-time processing and expedite decision-making. This innovative approach ensures seamless connectivity among vehicles, the surrounding infrastructure, and various entities. To enhance communication efficiency, the entire roadside unit (RSU) region can be subdivided into various sub-regions, allowing RSUs to monitor and govern each sub-region. This strategic approach significantly reduces transaction approval time, thereby improving real-time communication. The framework incorporates a consensus mechanism to ensure robust security, even in the presence of malicious nodes. Recognizing the dynamic nature of V2X networks, the addition and removal of nodes are aligned. Communication latency is minimized through the deployment of computational resources near the data source and leveraging edge computing. This feature provides invaluable recommendations during critical situations that demand swift decision-making. The proposed architecture is further validated using the "veins" simulation tool. Simulation results demonstrate a remarkable success rate exceeding 95%, coupled with a significantly reduced consensus time compared to prevailing methodologies. This comprehensive approach not only addresses the evolving requirements of secure V2X communication but also substantiates practical success through simulation, laying the foundation for a transformative era in transportation.

Design and Development of Middleware for Clinical Trial System based on Brain MR Image (뇌 MR 영상기반 임상연구 시스템을 위한 미들웨어 설계 및 개발)

  • Jeon, Woong-Gi;Park, Kyoung-Jong;Lee, Young-Seung;Choi, Hyun-Ju;Jeong, Sang-Wook;Kim, Dong-Eog;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.805-813
    • /
    • 2012
  • In this paper, we have designed and developed a middleware for an effectively approaching database to the existed brain disease clinical research system. The brain disease clinical research system was consisted of two parts i.e., a register and an analyzer. Since the register collects the registration data the analyzer yields a statistical data which based on the diverse variables. The middleware has designed to database management and a large data query processing of clients. By separating the function of each feature as a module, the module which was weakened connectivity between functionalities has been implemented the re-use module. And image data module used a new compression method from image to text for an effective management and storage in database. We tested the middleware system using 700 actual clinical medical data. As a result, the total data transmission time was improved maximum 115 times faster than the existing one. Through the improved module structures, it is possible to provide a robust and reliable system operation and enhanced security functionality. In the future, these middleware importances should be increased to the large medical database constructions.

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

Trace Interpolation using Model-constrained Minimum Weighted Norm Interpolation (모델 제약조건이 적용된 MWNI (Minimum Weighted Norm Interpolation)를 이용한 트레이스 내삽)

  • Choi, Jihyun;Song, Youngseok;Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee;Kim, Kiyoung;Lee, Jeongmo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2017
  • For efficient data processing, trace interpolation and regularization techniques should be antecedently applied to the seismic data which were irregularly sampled with missing traces. Among many interpolation techniques, MWNI (Minimum Weighted Norm Interpolation) technique is one of the most versatile techniques and widely used to regularize seismic data because of easy extension to the high-order module and low computational cost. However, since it is difficult to interpolate spatially aliased data using this technique, model-constrained MWNI was suggested to compensate for this problem. In this paper, conventional MWNI and model-constrained MWNI modules have been developed in order to analyze their performance using synthetic data and validate the applicability to the field data. The result by using model-constrained MWNI was better in spatially aliased data. In order to verify the applicability to the field data, interpolation and regularization were performed for two field data sets, respectively. Firstly, the seismic data acquired in Ulleung Basin gas hydrate field was interpolated. Even though the data has very chaotic feature and complex structure due to the chimney, the developed module showed fairly good interpolation result. Secondly, very irregularly sampled and widely missing seismic data was regularized and the connectivity of events was quite improved. According to these experiments, we can confirm that the developed module can successfully interpolate and regularize the irregularly sampled field data.

A MDA-based Approach to Developing UI Architecture for Mobile Telephony Software (MDA기반 이동 단말 시스템 소프트웨어 개발 기법)

  • Lee Joon-Sang;Chae Heung-Seok
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.383-390
    • /
    • 2006
  • Product-line engineering is a dreaming goal in software engineering research. Unfortunately, the current underlying technologies do not seem to be still not much matured enough to make it viable in the industry. Based on our experiences in working on mobile telephony systems over 3 years, now we are in the course of developing an approach to product-line engineering for mobile telephony system software. In this paper, the experiences are shared together with our research motivation and idea. Consequently, we propose an approach to building and maintaining telephony application logics from the perspective of scenes. As a Domain-Specific Language(DSL), Menu Navigation Viewpoint(MNV) DSL is designed to deal with the problem domain of telephony applications. The functional requirements on how a set of telephony application logics are configured can be so various depending on manufacturer, product concept, service carrier, and so on. However, there is a commonality that all of the currently used telephony application logics can be generally described from the point of user's view, with a set of functional features that can be combinatorially synthesized from typical telephony services(i.e. voice/video telephony, CBS/SMS/MMS, address book, data connection, camera/multimedia, web browsing, etc.), and their possible connectivity. MNV DSL description acts as a backbone software architecture based on which the other types of telephony application logics are placed and aligned to work together globally.