• 제목/요약/키워드: Connections Fracture

검색결과 98건 처리시간 0.019초

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구 (An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel)

  • 김민성;김태수;김승훈;이용택
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.29-39
    • /
    • 2011
  • 강구조물에서 접합부의 구조적 거동을 파악하기 위해서 국내외에서 많은 이론과 실험을 통한 연구가 진행되고 있다. 특히, 국내에서는 탄소강 ㄱ형강의 블록전단파단과 전단지체현상 등에 대한 연구가 수행되어 왔다. 본 연구에서는 오스테나이트계 스테인레스강 앵글의 하중방향의 연단거리와 볼트배열(1행 1열,1행 2열)을 주요변수로 실험체를 계획하여, 앵글 볼트 접합부의 파단형태와 면외변형의 영향을 조사한다. 또한, 현행 기준식에 의한 예측결과와 실험결과의 파단양상과 최대내력을 비교하고 면외변형으로 인한 내력저하정도를 평가한다.

반복하중을 받는 철골보 접합부의 거동 (Behavior of Steel Beam Connections under Cyclic Loading)

  • 이승준;김상배
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.23-32
    • /
    • 1999
  • 본 연구에서는 반복하중을 받는 H형강보 접합부의 거동을 실험적인 방법으로 조사하였다. 본 연구의 목적은 H형강보 접합부의 이력거동에 강제의 특성과 스캘럽의 형태가 주는 영향을 조사하는 것이다 5개의 접합부 시험체를 제작하여 반복하중을 재하면서 실험을 수행하였다. 보 접합부에서의 하중-회전변형 곡선을 얻었으며 접합부의 변형능력과 에너지 소산능력을 상호 비교하였다. 강재가 SS400인 시험제는 충분한 변형능력과 에너지소산능력을 보였으나 강재가 SM490인 시험체는 취성적인 파괴를 보였으며 변형능력이 작았다. 접합부 스캘럽의 형태는 접합부의 거동에 영향을 주지않았다.

  • PDF

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

The structural detailing effect on seismic behavior of steel moment resisting connections

  • Farrokhi, Hooman;Danesh, F. Ahmadi;Eshghi, Sassan
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.617-630
    • /
    • 2010
  • Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

각형강관 기둥을 가진 철골모멘트 접합부의 변형능력 (Deformation Capacity of Steel Moment Connections with RHS Column)

  • 김영주;오상훈;유홍식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF