• Title/Summary/Keyword: Connection Constraint Algorithm

Search Result 15, Processing Time 0.025 seconds

Maximum Node Interconnection by a Given Sum of Euclidean Edge Lengths in a Cluster Node Distribution

  • Kim, Yeonsoo;Kim, Minkwon;Hwang, Byungyeon
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.90-95
    • /
    • 2022
  • This paper proposes a method to find a tree with the maximum number of terminals that can be connected by a given length when numerous terminals distributed in a cluster form are given to the Euclidean plane R2 with several constraints. First constraint is that a given terminal is distributed in a cluster form, second is that a given length cannot connect all terminals in the tree, and third is that there is no curved connection between each terminal. This paper proposes a method to establish more efficient interconnections within terminals distributed in a cluster form by improving a randomly distributed memetic genetic algorithm. The construction of interconnections has been extensively used in design-related fields, from networking to architecture. Additionally, in real life, the construction of interconnections is mostly distributed in the form of clusters. Therefore, the heuristic algorithm proposed in this paper can be effectively utilized in real life and is expected to provide various cost savings.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

Maximum Terminal Interconnection by a Given Length using Rectilinear Edge

  • Kim, Minkwon;Kim, Yeonsoo;Kim, Hanna;Hwang, Byungyeon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.114-119
    • /
    • 2021
  • This paper proposes a method to find an optimal T' with the most terminal of the subset of T' trees that can be connected by a given length by improving a memetic genetic algorithm within several constraints, when the set of terminal T is given to the Euclidean plane R2. Constraint (1) is that a given length cannot connect all terminals of T, and (2) considers only the rectilinear layout of the edge connecting each terminal. The construction of interconnections has been used in various design-related areas, from network to architecture. Among these areas, there are cases where only the rectilinear layout is considered, such as wiring paths in the computer network and VLSI design, network design, and circuit connection length estimation in standard cell deployment. Therefore, the heuristics proposed in this paper are expected to provide various cost savings in the rectilinear layout.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Virtual Source and Flooding-Based QoS Unicast and Multicast Routing in the Next Generation Optical Internet based on IP/DWDM Technology (IP/DWDM 기반 차세대 광 인터넷 망에서 가상 소스와 플러딩에 기초한 QoS 제공 유니캐스트 및 멀티캐스트 라우팅 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Routing technologies considering QoS-based hypermedia services have been seen as a crucial network property in next generation optical Internet (NGOI) networks based on IP/dense-wavelength division multiplexing (DWDM). The huge potential capacity of one single fiber. which is in Tb/s range, can be exploited by applying DWDM technology which transfers multiple data streams (classified and aggregated IP traffics) on multiple wavelengths (classified with QoS-based) simultaneously. So, DWDM-based optical networks have been a favorable approach for the next generation optical backbone networks. Finding a qualified path meeting the multiple constraints is a multi-constraint optimization problem, which has been proven to be NP-complete and cannot be solved by a simple algorithm. The majority of previous works in DWDM networks has viewed heuristic QoS routing algorithms (as an extension of the current Internet routing paradigm) which are very complex and cause the operational and implementation overheads. This aspect will be more pronounced when the network is unstable or when the size of network is large. In this paper, we propose a flooding-based unicast and multicast QoS routing methodologies(YS-QUR and YS-QMR) which incur much lower message overhead yet yields a good connection establishment success rate. The simulation results demonstrate that the YS-QUR and YS-QMR algorithms are superior to the previous routing algorithms.