• Title/Summary/Keyword: Connected-region labeling

Search Result 22, Processing Time 0.018 seconds

Automatic Brain Segmentation for 3D Visualization and Analysis of MR Image Sets (MR영상의 3차원 가시화 및 분석을 위한 뇌영역의 자동 분할)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.542-551
    • /
    • 2000
  • In this paper, a novel technique is presented for automatic brain region segmentation in single channel MR image data sets for 3D visualization and analysis. The method detects brain contours in 2D and 3D processing of four steps. The first and the second make a head mask and an initial brain mask by automatic thresholding using a curve fitting technique. The stage 3 reconstructs 3D volume of the initial brain mask by cubic interpolation and generates an intermediate brain mask using morphological operation and labeling of connected components. In the final step, the brain mask is refined by automatic thresholding using curve fitting. This algorithm is useful for fully automatic brain region segmentation of T1-weighted, T2-weighted, PD-weighted, SPGR MRI data sets without considering slice direction and covering a whole volume of a brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 in comparison with manual drawing in similarity index.

  • PDF

An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera (다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현)

  • Lee, Byung-Eun;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.17-22
    • /
    • 2009
  • DaVinci processors are popular media processors for implementing embedded multimedia applications. They support dual core architecture: ARM9 core for video I/O handling as well as system management and peripheral handling, and DSP C64+ core for effective digital signal processing. In this paper, we propose our efforts for optimal implementation of object tracking algorithm in DaVinci-based smart camera which is being designed and implemented by our laboratory. The smart camera in this paper is supposed to support object detection, object tracking, object classification and detection of intrusion into surveillance regions and sending the detection event to remote clients using IP protocol. Object tracking algorithm is computationally expensive since it needs to process several procedures such as foreground mask extraction, foreground mask correction, connected component labeling, blob region calculation, object prediction, and etc. which require large amount of computation times. Thus, if it is not implemented optimally in Davinci-based processors, one cannot expect real-time performance of the smart camera.

  • PDF