• Title/Summary/Keyword: Connected-pile foundation

Search Result 21, Processing Time 0.022 seconds

Case Study on Foundation Design of over-water Bridge (해상교량기초의 설계 사례)

  • Jang, Hak-Sung;Jang, Young-Il;Choi, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The economic growth brought the demand of bridge connected to island and land increasingly in Korea. Therefore, Civil engineer has faced a lot of problem to be considered such as structural stability, economic feasibility and constructional method. At the bridge site to be constructed, the depth of water is about 24m, the thickness of weathered rock overlaying bed rock is thicker than 36m. If open caisson foundation is supported in bed rock, the hight of foundation is about 60m. It is difficult to construct in these conditions. If open caisson foundation is supported in weathered rock, the size of the foundation should be increased. And If we apply the pile foundation, the higher construction cost will be needed. Under the circumstances, we need a new foundation type-composite foundation that is consisted of open caisson and cast-in-place piles. Because the design concept of composite foundation is not presented in Korea Bridge Design Standard, we are willing to clear the bearing behavior of composite foundation by numerical analysis in this paper.

  • PDF

Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix

  • Yan, Wei;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.269-289
    • /
    • 2012
  • Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM) are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as massless rotational springs. Comparison with existent numerical and experimental results indicates the proposed method is very effective and accurate for dynamic analysis, especially in the high frequency range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and transient responses of the piles are studied.

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

Numerical Analyses of O-Cell Load Test on Pile (양방향말뚝재하시험의 수치해석)

  • Joo, Yong-Sun;Kim, Nak-Kyoung;Kim, Woong-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.748-753
    • /
    • 2008
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurisation causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. Bi-directional load tests using O-cell are now becoming common practice around the world, particularly where the loads to be applied are high or where it is not convenient to perform top-down loading tests. In the study, calculate ultimate capacity of bi-directional load test using FEM and beam on elasto-plastic foundation theory.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Efficiency of Pile Groups with Arrangement of Piles Using Numerical Analysis (수치해석을 통한 말뚝 배치에 따른 군말뚝 효율 분석)

  • Lee, Kichoel;Shin, Sehee;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • In general, the foundation refers to a group pile with several single piles connected by an upper structure. However, when a load is applied to pile groups, the range of stress applied to the ground is expanded and overlapped compared with the single pile, so the overall bearing capacity may decrease. This reduction ratio of bearing capacity is referred to as the efficiency of pile groups. Therefore, in this study, the soil composition, the arrangement and spacing of group piles, and the contact characteristics between the ground and piles were set as analysis variables, and the group pile efficiency and individual pile behavior were analyzed. As a result of the analysis, the efficiency of pile groups tends to converge or decrease when the friction coefficients are increased with ground type. Through this, the optimal efficiency of pile groups can be derived. In addition, through the analysis of individual piles, the load ratio of each pile was analyzed when an upper load was applied. In the case of piles located inside group piles, the load was relatively low, and this is considered to have an influence on the internal ground.

Experimental Evaluation of Reserve Capacities for Connection Details between Steel Pipe Pile and Concrete Footing of Type-B (Type-B방식의 강관말뚝과 확대기초 연결부 상세에 따른 보유내력의 실험적 평가)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kwon, Yong-Kil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.183-192
    • /
    • 2008
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the korea highway bridge code, type-B method is prevalent. In this study, vertical, lateral, and tension loading test are done for two types of type B connection to review stress concentration, formation and behavior of imaginary RC column in the footing. Welding type and hook type as the connection method are considered in this study. Test results show that welding type have the more reserve capacity than hook type and the specimens connected by the welding type behave as the imaginary RC column in the footing. However, the specimens connected by the hook type did not behave as the imaginary RC column in the footing but behave as the hinge.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Horizontal Bearing Behavior of Group Suction Piles by Numerical Analysis (수치해석을 이용한 그룹형 석션파일의 수평방향 지지거동 분석)

  • Lee, Ju-Hyung;Lee, Si-Hoon;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.119-127
    • /
    • 2013
  • Recently, several researches on the development of new economical foundation types have been performed to support floating structures as many offshore structures have been constructed. This study focused on the evaluation of bearing capacity of group suction piles, which are connected by a concrete pile cap. The offshore floating structures are mainly subjected to horizontal loading, so the horizontal bearing capacities of the group suction piles were analyzed by performing 3-dimensional finite element analyses. The group suction piles are expected to behave as a rigid pile due to its shallow embedded depth. Therefore, the detailed soil modeling was necessary to simulate the bearing behavior of soils under low confining pressure. The modulus and the strength of soils were modelled to increase with effective confining pressure in soils. For the parametric study, the center-to-center spacing between piles was varied and two soil types of clay and sands were applied. The analyses results showed that the yielding load of the group pile increased with the increase of the pile spacing and the yielding load of the group piles with 5D spacing was about 3 times larger than that of the single pile with free rotation.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.