• Title/Summary/Keyword: Conjunctive Use

Search Result 24, Processing Time 0.018 seconds

Water Transportation and Stratification Modification in the Andong-Imha Linked Reservoirs System (안동호-임하호 연결에 따른 물 이동과 수온성층 변화)

  • Park, Hyeung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • Recently, Andong Reservoir and Imha Reservoir located in Nakdong River basin (Korea) are being connected by a tunnel (length 2km, diameter 5.5m) for a conjunctive use. The objectives of this study were to construct a two dimensional(2D) laterally-averaged model for two reservoirs, and examine the effects of connection on the water transportation and temperature stratification in the reservoirs. The 2D models for each reservoir were calibrated using field data obtained in 2006, and applied to the linked system for the year of 2002 when a severe flood intruded into Imha Reservoir during the typhoon Rusa. Simulation results showed that 364 million $m^3$ of water can be conveyed from Imha to Andong, while 291 million $m^3$ of water from Andong to Imha after connection. It resulted in 1.38 m increase of annual averaged water level in Andong Reservoir, whereas 3.75 m decrease in Imha Reservoir. The structures of thermal stratification in both reservoirs were influenced in line with the flow exchanges. In Andong Reservoir, the location of thermocline moved upward about 10 m compared to an independent operation. The results imply that the persistent turbidity issue of Imha Reservoir might be shifted to Andong Reservoir during a severe flood event after connection.

Optimized Encoding of Sudoku Puzzle for SAT Solvers (SAT 처리기를 위한 수도쿠 퍼즐의 최적화된 인코딩)

  • Kwon, Gi-Hwon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.616-624
    • /
    • 2007
  • Sudoku can be regarded as a SAT problem. Various encodings are known for encoding Sudoku as a Conjunctive Normal Form (CNF) formula, which is the standard input for most SAT solvers. Using these encodings for large Sudoku, however, generates too many clauses, which impede the performance of state-of-the-art SAT solvers. This paper presents an optimized CNF encodings of Sudoku to deal with large instances of the puzzle. We use fixed cells in Sudoku to remove redundant clauses during the encoding phase. This results in reducing the number of clauses and a significant speedup in the SAT solving time.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

Comparison of the Features of Science Language between Texts of Earth Science Articles and Earth Science Textbooks (지구과학 논문과 지구과학 교과서 텍스트의 과학 언어적 특성 비교)

  • Lee, Jeong-A;Kim, Chan-Jong;Maeng, Seung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.367-378
    • /
    • 2007
  • The purpose of this study is to investigate the features of science language in Earth science textbooks and Earth science research articles. We examined two Earth science textbooks and two Earth science articles using the taxonomy of scientific words, the text structure analysis of explanations, the analysis of conjunctive relations and reasoning, and the function of conjunction. The results showed that school science language revealed in Earth science textbooks had high proportion of naming words and the text structures in which definition/exemplification structure and description structure were dominant. Also, internal relations that showed additional arrangement rather than logical inference, were predominant in Earth science textbooks. However, scientists' science language revealed in the Earth science articles had more proportion of process words and concept words than the Earth science textbooks and the schematic structure of explanation texts, such as orientation - implication sequence - conclusion. In addition, the text structures in each sentences of implication -sequence showed cause/effect or problem-solving after description structures. Also each sentences expressed causal or abductive reasoning through the internal relations using verbs or adverbial inflection. It is necessary that we bridge the gap between the two languages for students' authentic use of science language. For the bridging, we propose "interlanguage", which mediates between school science language and scientists' language.