• Title/Summary/Keyword: Conjugated spinning

Search Result 4, Processing Time 0.016 seconds

Manufacturing and Material Analysis of Collagen/Chitosan Conjugated Fibers for Medical Application (의료용 소재 활용을 위한 콜라겐/키토산 복합섬유의 제조 및 특성 분석)

  • Gwak, Hyeon Jung;Ahn, Hyunchul;Lee, Won Jun;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.131-140
    • /
    • 2021
  • Collagen and chitosan are used in medical and cosmetic materials as natural polymers. In order to utilize the advantages of the materials, collagen/chitosan conjugated wet-spun fibers were prepared. The analysis of surface, optical, thermal and mechanical properties was carried out on the various composition of collagen and chitosan. As a result of images analysis, it was verified that the collagen/chitosan conjugated fibers were stably spun. In addition, the optical and thermal properties of fibers were observed to be changed by hydrogen bond. As a result, an optimized composition could be found at an appropriate content. Moreover, the optimized fibers have mechanical properties similar to chitosan fibers, while improving the structural and thermal stability by its hydrogen bond. In addition, the wet-spun collagen/chitosan conjugated fibers can be applied to medical and various fields through mechanical properties according to content control.

The Physical Properties of Super Bulky Yarn According to Textured Condition (Super Bulky Yarn의 사가공 조건에 따른 물성변화)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • In this study, physical properties were studied by using latent stretching yarn in order to develop the texturing yarn technique for super bulky yarn, which is better in bulkiness and handle than natural wool and also adds property of synthetic fiber to natural wool. In order to obtain textured conditions by analysing basic properties for manufacturing DTY yarn with super bulky property, DTY 50d/12 after spinning latent yarn spined POY 80d/12 was obtained under the two conditions of (i) false twist(T/M) level 3 in DTY texturing and (ii) draw ratio level 4 in draw texturing. For DTY texturing yarn, Elongation rate increased as the heat treatment time and temperatures increased. In addition, shrinkage became higher as false twist was higher, so that elongation rate became lower. When annealing became longer in time and higher in temperature, initial modulus increased. In addition, as the count of false twist increased, the initial modulus showed higher values. For draw texturing yarn, under the conditions of heat temperature 180 and heating time 30 minutes, shrinkage rate in draw ratio 1.55 and 1.6 draw ratio was 7%, and that in 1.65 and 1.7 draw ratio was 8.5%. High draw ratio samples' tenacity was much influenced by heating time and temperature, but low draw ratio samples' tenacity was influenced not by treated time, but by treated temperature.

The Mechanical Properties of Thin Suede Fabric with Stretch Function (신축기능성 박지 Suede 직물의 역학적 성질 변화)

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.288-295
    • /
    • 2012
  • Although some degree of mechanical properties of suede fabrics mainly related to non-woven suede fabric has some researched, the thin suede fabric has rarely been researched. In this study, polyester(DTY 50/72) was used for warp, and after producing latent yarn and sea-island yarn for weft, two yarns were compounded to produce sea-island DTY yarn. By using the two produced yarns for warp and weft, we produced thin suede fabric with stretch function. For weft 2ply, weft density 85, 90, 100(picks/in) were applied to weave fabric, and for weft 1ply, weft density 125, 135, 140(picks/in) were applied to produce weft face 5-end satin weave. The mechanical properties of the produced fabric were researched. The result are as followed. The weight loss ratio of the suede fabric produced for this experiment reached 15% on the conditions of temperature $90^{\circ}C$ and 20 minutes, so that island parts were completely separated. The strength of weft 1ply applied suede fabric was about 7.5kg and that of 2ply suede fabric and about 3.5kg. But the strain of two samples ranged from about 40 to 43%. Although Hari was high when weft was denser. The values of Koshi and Kisimi were low. And shear stiffness was high when sea-island DTY yarn was used. The WC value was higher in the case of 2ply than in that of 1ply sea-island DTY yarn for weft, so that we may conclude that Fukurami was more affected in the 2ply case.

Far-infrared Emission Characteristics of ZrC Imbedded Heat Storage Knitted Fabrics for Emotional Garment (탄화지르코늄 함유 감성의류용 축열/발열 편물의 원적외선 방출특성)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • This paper investigated far-infrared emission characteristics of ZrC imbedded heat storage knitted fabrics for emotional garment. For this purpose, ZrC imbedded heat storage PET was spun with high viscosity PET imbedded ZrC powder on the core part and low viscosity PET on the sheath part by conjugated spinning method. Ingredient analysis and far-infrared emission characteristics assessment of spun filament were carried out by EDS and FT-IR spectrometer. Two kinds of knitted fabrics were made using texturized ZrC imbedded PET for measuring thermal characteristics of ZrC imbedded heat storage PET. Zr peak was certified by EDS measurement and it was confirmed that content of Zr was 19.29%. Far-infrared analysis revealed that emission power at the range of wavelength, $5{\sim}20{\mu}m$ was $3.65{\times}10^2W/m^2$, and emissivity was 0.906. Heat storage analysis by KES-F7 system revealed that $Q_{max}$ of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular one, which means that ZrC imbedded PET knitted fabric has heat storage property. Thermal conductivity of ZrC imbedded PET knitted fabric was higher than that of regular PET one which was caused by high thermal conductivity of Zr itself. Hand property of ZrC imbedded knitted fabric was not inferior compared to regular PET knitted fabric, which preferably was found to be dependent on knit structure and surface property.