• 제목/요약/키워드: Conical Wall

검색결과 52건 처리시간 0.021초

Design for High Gain Spiral Antenna by Added Conical Cavity Wall

  • Jeong, Jae-Hwan;Min, Kyeong-Sik;Kim, In-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.165-172
    • /
    • 2013
  • This paper describes a design for a spiral antenna with a conical wall to obtain the high gain. The gain and the axial ratio of the spiral antenna were improved by a new design that included a conical wall and an optimized Archimedean slit on the ground plane in a conventional antenna with a circular cavity wall and a 4.5-turn slit. A gain improvement of 9.5 dBi higher and a good axial ratio of 1.9 dB lower were measured by the added conical wall and the newly designed slit from the current distribution control on the ground plane, respectively. The measured return loss, gain and axial ratio of the proposed antenna showed a good agreement with the simulated results. The proposed antenna will be applied to a non-linear junction detector system.

Free molecule transmission probability of a conical tube with wall sorption

  • 인상렬
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1998
  • The uniform distributed pumping model is used to derive analytic expressions of the pressure profile for the molecular flow regime in linearly tapered or flared(conical or pyramidal) tubes with wall sorption. The concept of transmission conductance for sticky tubes of arbitrary shape is newly introduced to calculate the transmission probability using the pressure profile. The transmission probability obtained analytically for a conical sticky tube is compared with that from the Monte Carlo simulation.

미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구 (A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble)

  • 유성훈;박상희;강우진;한승욱
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

The evaluation with ANSYS of stresses in hazelnut silos using Eurocode 1

  • Kibar, Hakan;Ozturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.15-37
    • /
    • 2014
  • In this study, the optimum silo dimensions for the barrel-type steel-concentrated silo with a conical outlet port usable in the hazelnut storage were investigated. Three different types of silo models as Model 1 (1635 tons), Model 2 (620 tons) and Model 3 (1124 tons) were used in the study. Varying wall thicknesses were used for Model 1 (10, 11, 12, 13, 14, 15 and 20 mm), Model 2 (10, 15 and 20 mm) and Model 3 (10, 15 and 20 mm) silos. For Model 1 silo has the most storage capacity here, to determine its optimum wall thickness, the wall thicknesses of 11, 12, 13 and 14 mm were used as different from the other models. Thus the stresses occurring in different lines with ANSYS finite element software were examined. In the study it was determined that the 10, 11 and 12 mm wall thicknesses of the Model 1 silo are not safe in terms of the stresses caused by the vertical pressure loads in the filling conditions. From the view of the filling and discharge conditions, other wall thicknesses and model silos were diagnosed to be secure. The optimum silo dimensions which won't cause any structural problems have been found out as the Model 1 silo with a 13 mm wall thickness when the filling capacity and the maximum von Mises stresses are taken into account. This barrel-type silo with conical outlet port sets forth the most convenient properties in hazelnut storing in terms of engineering.

이단 원추형 오리피스를 지니는 유동장에 대한 수치해석 (Numerical Analysis for the Flow Field past a Two-Staged Conical Orifice)

  • 김연수;김유곤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.499-505
    • /
    • 2001
  • The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of $2{\times}10^4$. The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (${\theta}$) against the wall, the interval(L) between orifices, the relative angle of rotation(${\alpha}$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hole affected the pressure drop and the flow field a lot, But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed.

  • PDF

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

이단 원추형 오리피스를 지나는 압력장과 유동장에 관한 수치적 연구 (Numerical Analysis for the Pressure and Flow Fields past a Two-Staged Conical Orifice)

  • 김연수;김유곤
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.278-287
    • /
    • 2002
  • The objective of the paper was to calculate the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2$\times$10$^4$. The effective parameters fur the pressure drop and the recirculation region were the conical orifice\`s inclined angle ($\theta$) against the wall, the interval(S) between orifices, the relative angle of rotation($\alpha$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area, the number(N) of the orifice's holes having the same mass flow rate, and the thickness(t) of the orifices. It was fecund that the shape of the orifice's hole, the number of the orifice's holes and the thickness of the orifice affected the total pressure drop a lot and that the conical orifice's inclined angle against the wall, the relative angle of rotation of the orifices, the number of the orifice's holes and the thickness of the orifices affected the center location of the recirculation region. The PISO algorithm with FLUENT code was employed to analyze the flow field.

An extremum method for bending-wrinkling predictions of inflated conical cantilever beam

  • Wang, Changguo;Du, Zhenyong;Tan, Huifeng
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.39-51
    • /
    • 2013
  • An extremum method is presented to predict the wrinkling characteristics of the inflated cone in bending. The wrinkling factor is firstly defined so as to obtain the wrinkling condition. The initial wrinkling location is then determined by searching the maximum of the wrinkling factor. The critical wrinkling load is finally obtained by determining the ratio of the wrinkling moment versus the initial wrinkling location. The extremum method is proposed based on the assumption of membrane material of beam wall, and it is extended to consider beam wall with thin-shell material in the end. The nondimensional analyses show that the initial wrinkling location is closely related to the taper ratio. When the taper ratio is higher than the critical value, the initial wrinkles will be initiated at a different location. The nondimensional critical wrinkling load nonlinearly increases as the taper ratio increases firstly, and then linearly increases after the critical taper ratio. The critical taper ratio reflects the highest load-carrying efficiency of the inflated cone in bending, and it can be regarded as a measure to optimize the geometry of the inflated cone. The comparative analysis shows fairly good agreement between analytical and numerical results. Over the whole range of the comparison, the mean differences are lower than 3%. This gives confidence to use extremum method for bending-wrinkling analysis of inflated conical cantilever beam.

원추형 유동층 연소기 내의 열전달에 미치는 복원계수의 영향에 대한 수치해석 연구 (A Numerical Study on the Effect of Coefficient of Restitution to Heat Transfer in a Conical Fluidized Bed Combustor)

  • 강승모;박외철;;고동국;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제14권4호
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, numerical simulations on conical fluidized bed combustors were carried out to estimate the effect of coefficients of restitution between particle and particle and particle to wall on hydrodynamics and heat transfer. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics and heat transfer in a conical fluidized bed combustor. The solid phase properties were calculated by applying the kinetic theory of granular flow. Simulations results show that increasing the restitution coefficient between the particle and particle results in increasing the bed pressure drop. On other hand, the increasing of particle to wall coefficient of restitution results in decreasing the bed pressure drop. It is found that the coefficient of restitution has little effect on heat transfer.

A Study of Hot Metal Extru-Bending Process

  • 진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제5회 압출 및 인발가공 심포지엄
    • /
    • pp.63-70
    • /
    • 2002
  • The purpose of the present study is to propose a new way of manufacturing curved metal tubes with arbitrary sections and way of eliminating the conventional bending defects such as thinning and thickening, in the wall of tube, distortion of the section, and wrinkling and folding on the surface by the extrusion bending process that can extrude and weld together one or more billets inside dies cavity, and can bend them during extrusion due to the gradient of extrusion velocities controlled by the eccentricity of the cavity sections between the entrance and the exit of the eccentric conical extrusion bending dies and conical plug, or by the relative size of the holes of multi-hole container, or by the relative moving velocity of multi-punches.

  • PDF