• Title/Summary/Keyword: Congestion Control Mechanism

Search Result 178, Processing Time 0.023 seconds

A Congestion Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 혼잡 제어 메커니즘)

  • Joo, Jeong-Ran;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 2007
  • Wireless Sensor Network(WSN) is composed of a large number of sensor nodes and accomplish a common task such as environment monitoring or asset tracking. This paper proposed a congestion control mechanism applying the ECN mechanism and the cross layer design to cope with temporal congestion in WSN. We experimented with the proposed congestion control mechanism using ns-2 simulator and measured the throughput of sink node. Simulation results show that the suggested mechanism can improve the performance of packet throughput by dealing with the congestion of network efficiently.

  • PDF

Congestion Control to Improve QoS with TCP Traffic (TCP트래픽에 대한 QoS를 향상시키기 위한 폭주제어)

  • 양진영;이팔진;김종화
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • End-to-end congestion control mechanism have been critical to the robustness and stability of the Internet. Most of today's Internet traffic is TCP, and we expect this to remain so in the future. TCP/IP is the intermediate transport layer candidate for today's applications. TCP uses an adaptive window-based flow control. The congestion avoidance and control algorithms deployed by TCP aims at using the available network bandwidth. This paper compares different congestion control policies, and proposes the new design mechanism for future public networks

  • PDF

Double Queue CBOKe Mechanism for Congestion Control (이중 큐 CHOKe 방식을 사용한 혼잡제어)

  • 최기현;신호진;신동렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.867-875
    • /
    • 2003
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization in which TCP congestion window size is fluctuated during congestion period. Furthermore, if RTT(Round Trip Time) is increased, three duplicate ACK packets are not correct congestion signals because congestion might already disappear and the host may send more packets until it receives three duplicate ACK packets. Recently there are increasing interests in solving end-to-end congestion control using AQM(Active Queue Management) to improve the performance of TCP protocols. AQM is a variation of RED-based congestion control. In this paper, we first evaluate the effectiveness of the current AQM schemes such as RED, CHOKe, ARED, FRED and SRED, over traffic with different rates and over traffic with mixed responsive and non-responsive flows, respectively. In particular, CHOKe mechanism shows greater unfairness, especially when more unresponsive flows exist in a shared link. We then propose a new AQM scheme using CHOKe mechanism, called DQC(Double Queue CHOKe), which uses two FIFO queues before applying CHOKe mechanism to adaptive congestion control. Simulation shows that it works well in protecting congestion-sensitive flows from congestion-causing flows and exhibits better performances than other AQM schemes. Also we use partial state information, proposed in LRURED, to improve our mechanism.

Enhancing TCP Performance over Wireless Network with Variable Segment Size

  • Park, Keuntae;Park, Sangho;Park, Daeyeon
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.108-117
    • /
    • 2002
  • TCP, which was developed on the basis of wired links, supposes that packet losses are caused by network congestion. In a wireless network, however, packet losses due to data corruption occur frequently. Since TCP does not distinguish loss types, it applies its congestion control mechanism to non-congestion losses as well as congestion losses. As a result, the throughput of TCP is degraded. To solve this problem of TCP over wireless links, previous researches, such as split-connection and end-to-end schemes, tried to distinguish the loss types and applied the congestion control to only congestion losses; yet they do nothing for non-congestion losses. We propose a novel transport protocol for wireless networks. The protocol called VS-TCP (Variable Segment size Transmission Control Protocol) has a reaction mechanism for a non-congestion loss. VS-TCP varies a segment size according to a non-congestion loss rate, and therefore enhances the performance. If packet losses due to data corruption occur frequently, VS-TCP decreases a segment size in order to reduce both the retransmission overhead and packet corruption probability. If packets are rarely lost, it increases the size so as to lower the header overhead. Via simulations, we compared VS-TCP and other schemes. Our results show that the segment-size variation mechanism of VS-TCP achieves a substantial performance enhancement.

Loss Discrimination Mechanism for Improving the Performance of TFRC in Last-hop Wireless Networks (라스트 홉 무선 네트워크에서 TFRC의 성능향상을 위한 손실 구별 기법)

  • Jeong, Kyu-Min;Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.227-231
    • /
    • 2010
  • The TFRC is a congestion control mechanism which supports the requirements of video streaming applications and controls its sending rate by using the information such as loss event rate and RTT (round-trip time). However, TFRC has a performance degradation in wireless networks because it performs congestion control by judging all the losses occurred in wireless network as a congestion signal. In this paper, we propose new loss discrimination mechanism which is using ECN in order to solve the performance degradation of TFRC. Through the results of simulation, we proved that the proposed mechanism can improve the performance of TFRC.

A Survey on Congestion Control for CoAP over UDP

  • Lim, Chansook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.17-26
    • /
    • 2019
  • The Constrained Application Protocol (CoAP) is a specialized web transfer protocol proposed by the IETF for use in IoT environments. CoAP was designed as a lightweight machine-to-machine protocol for resource constrained environments. Due to the strength of low overhead, the number of CoAP devices is expected to rise rapidly. When CoAP runs over UDP for wireless sensor networks, CoAP needs to support congestion control mechanisms. Since the default CoAP defines a minimal mechanism for congestion control, several schemes to improve the mechanism have been proposed. To keep CoAP lightweight, the majority of the schemes have been focused mainly on how to measure RTT accurately and how to set RTO adaptively according to network conditions, but other approaches such as rate-based congestion control were proposed more recently. In this paper, we survey the literature on congestion control for CoAP and discuss the future research directions.

Technical Trend and Improvement of Congestion Control for Machine-to-Machine Communications in 3GPP LTE-A Systems (3GPP LTE-A 시스템에서의 M2M 통신을 위한 혼잡 제어 기술 동향 및 개선 방안)

  • Kim, Jae-Hyun;Kim, Seog-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.487-494
    • /
    • 2014
  • This paper focuses on an advanced congestion control scheme for M2M(Machine-to-Machine) communications in 3GPP LTE-A standard. A large number of MTC(Machine-type-Communication) devices try to access to LTE-A networks and send data to the networks all at once. In this characteristics, M2M communications will bring the serious network congestion problems into LTE-A cellular networks. To solve this critical problem, a congestion control mechanism will be required and it has been studied since Rel-10 LTE-A systems based on backoff mechanism for mobility management and session management. In this paper, we briefly introduce the main concept and operation about the congestion control scheme in 3GPP LTE-A standard. Also, simulation results for the basic congestion control and advanced congestion control scheme in MTC communication environment are provided and the improvement direction is considered in future 3GPP LTE-A standard.

TCP Performance Control Method for the Wireless Link by using Extended ECN Mechanism (확장된 ECN 메커니즘을 사용한 무선 링크에서의 TCP성능 제어 기법)

  • Yun, You-Hun;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.336-343
    • /
    • 2002
  • Nowadays, after appearance of wireless network the existent internet environment is changing into the united wire/wireless network. But the present TCP regards all of the packet losses on transmission as the packet tosses due to the congestion. When it is applied on the wireless path, it deteriorates the end-to-end TCP throughput because it regards the packet loss by handoff or bit error as the packet loss by the congestion and it reduces the congestion window. In this paper, for solving these problems we propose the method that controls the performance of TCP on the wireless link by extending ECN which is used as a congestion control mechanism on the existent wire link. This is the method that distinguished the packet loss due to the congestion from due to bit error or handoff on the wireless network, so it calls the congestion control mechanism only when there occurs the congestion in the united wire/wireless network.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

Early Rate Adaptation Protocol in DiffServ for Multimedia Applications (멀티미디어 서비스를 위한 DiffServ 망에서의 빠른 혼잡 제어 알고리즘)

  • Park Jonghun;Yoo Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1B
    • /
    • pp.39-46
    • /
    • 2005
  • As the multimedia application traffic takes more portion in the internet traffic, it is necessary to control the network congestion through the congestion control protocol. In addition, the QoS-enabled networks such as DiffServ become an indispensable technology when running the multimedia applications. However, the previously proposed end-to-end congestion control algorithms take the round trip time to react the network congestion. Thus, as the RTT becomes larger, the reaction against the congestion gets delayed further, while the network congestion gets worse. In addition the performance of end-to-end congestion control algorithm is degraded if the QoS-enabled network runs the congestion control mechanism in the network level without any coordination between them. In this paper, we propose the early rate adaptation protocol for the DiffServ network which effectively linke the congestion control algorithm at the host and the congestion mechanism in the network together. By taking advantage of early congestion notification from the network it is possible to react the network congestion more quickly and effectively.