• Title/Summary/Keyword: Confusion matrix

Search Result 122, Processing Time 0.022 seconds

An Intelligent System for Filling of Missing Values in Weather Data

  • Maqsood Ali Solangi;Ghulam Ali Mallah;Shagufta Naz;Jamil Ahmed Chandio;Muhammad Bux Soomro
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.95-99
    • /
    • 2023
  • Recently Machine Learning has been considered as one of the active research areas of Computer Science. The various Artificial Intelligence techniques are used to solve the classification problems of environmental sciences, biological sciences, and medical sciences etc. Due to the heterogynous and malfunctioning weather sensors a considerable amount of noisy data with missing is generated, which is alarming situation for weather prediction stockholders. Filling of these missing values with proper method is really one of the significant problems. The data must be cleaned before applying prediction model to collect more precise & accurate results. In order to solve all above stated problems, this research proposes a novel weather forecasting system which consists upon two steps. The first step will prepare data by reducing the noise; whereas a decision model is constructed at second step using regression algorithm. The Confusion Matrix will be used to evaluation the proposed classifier.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.59-66
    • /
    • 2023
  • The Golden Cross is commonly seen as a buy signal in financial markets, but its reliability for predicting stock price movements is limited due to market volatility. This paper introduces a time-invariant approach that considers the Golden Cross as a singular event. Utilizing LSTM neural networks, we forecast significant stock price changes following a Golden Cross occurrence. By comparing our approach with traditional time series analysis and using a confusion matrix for classification, we demonstrate its effectiveness in predicting post-event stock price trends. To conclude, this study proposes a model with a precision of 83%. By utilizing the model, investors can alleviate potential losses, rather than making buy decisions under all circumstances following a Golden Cross event.

Optimized Deep Learning Techniques for Disease Detection in Rice Crop using Merged Datasets

  • Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.

A Study on the Auto Lumbar Spine Classification Model Based on EfficinetNetV2 (EfficientNetV2기반 자동 요추분류 모델에 관한 연구)

  • Chung-sub Lee;Dong-Wook Lim;Si-Hyeong Noh;Chul Park;Chang-Won Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.448-450
    • /
    • 2023
  • 본 논문에서는 복부 CT 의료영상에서 근감소증 진단을 위한 지표로 활용하는 요추 3번 슬라이스를 분류하기 위해서 CNN 기반의 EfficientNetV2를 사용하여 자동분류모델을 개발하였다. 이를 위해 먼저 전체 복부 CT 의료영상에서 Thoracic, L1, L2, L3, L4, L5, Sacral 7개의 슬라이스를 검출하도록 하였다. 자동분류모델의 정확성을 측정하기 위해서 Test 데이터셋을 사용하여 Confusion Matrix 결과를 통해 개발된 모델의 성능을 검증한 결과를 보였다. 본 연구결과는 복부 CT 영상에서 기존 L3 레벨의 특정 단면에서 근육량을 측정하는 것에서 다양한 부위에서 측정할 수 있는 장점을 갖게 된다. 그리고 의료영상기반의 근감소증 진단 연구에 도움을 줄 것으로 기대하고 있다.

Development and Validation of Spine Classification Model for Sarcopenia Diagnosis and Validation (근감소증 진단을 위한 척추 분류 모델 개발 및 검증)

  • Chung-sub Lee;Dong-Wook Lim;Si-Hyeong Noh;Chul Park;Chang-Won Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.475-478
    • /
    • 2023
  • 컴퓨터 단층촬영(CT)을 활용한 골격근 단면적은 근감소증과 관련된 기능을 평가하는 데 사용된다. 일반적인 근감소증 연구는 요추 3번의 골격근량을 주로 보지만 암 또는 폐절제술과의 상관관계를 예측하기 위한 다양한 연구에서는 흉추 4번, 7번, 8번, 10번, 12번 다양한 수준의 골격근량으로 연구를 진행하고 있음을 알 수 있다. 본 논문에서는 흉부와 복부 CT 영상에서 근감소증 진단을 위해서 흉추와 요추의 영역별 슬라이스를 검출하기 위해서 CNN 구조의 EfficientNetV2를 전이학습하여 인공지능 모듈을 개발하였다. 인공지능 모듈은 전체 흉부 및 복부 CT 영상에서 Cervical, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, L1, L2, L3, L4, L5, Sacral 총 19 클래스를 검출하도록 하였다. Test 데이터셋을 사용하여 Confusion Matrix와 Grad-CAM으로 모델의 정확도를 시각화하여 보였으며 검증으로 인공지능 모듈의 정확성을 측정하였다. 끝으로 우리가 개발한 다기관 공동연구 지원플랫폼에 적용하여 시각화된 결과를 보였다.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

A Prediction Triage System for Emergency Department During Hajj Period using Machine Learning Models

  • Huda N. Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.11-23
    • /
    • 2024
  • Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.

A Comparative Study of Deep Learning Models for Pneumonia Detection: CNN, VUNO, LUIT Models (폐렴 및 정상군 판별을 위한 딥러닝 모델 성능 비교연구: CNN, VUNO, LUNIT 모델 중심으로)

  • Ji-Hyeon Lee;Soo-Young Ye
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.177-182
    • /
    • 2024
  • The purpose of this study is to develop a CNN based deep learning model that can effectively detect pneumonia by analyzing chest X-ray images of adults over the age of 20 and compare it with VUNO, LUNIT a commercialized AI model. The data of chest X-ray image was evaluate based on accuracy, precision, recall, F1 score, and AUC score. The CNN model recored an accuracy of 82%, precision 76%, recall 99%, F1 score 86%, and AUC score 0.7937. The VUNO model recordded an accuracy of 84%, precision 81%, recall 94%, F1 score 87%, and AUC score 0.8233. The LUNIT model recorded an accuracy of 77%, precision 72%, recall 96%, F1 score 83%, and AUC score 0.7436. As a result of the Confusion Matrix analysis, the CNN model showe FN (3), showing the highest recall rate (99%) in the diagnosis of pneumonia. The VUNO model showed excellent overall perfomance with high accuracy (84%) and AUC score (0.8233), and the LUNIT model showed high recall rate (96%) but the accuracy and precision showed relatively low results. This study will be able to provide basic data useful for the development of a pneumonia diagnosis system by comprehensively considers the perfomance of the medel is necessary to effectively discriminate between penumonia and normal groups.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.