• Title/Summary/Keyword: Conformity

Search Result 1,221, Processing Time 0.026 seconds

A Study on the Application of BIPV for the Spread of Zero Energy Building (제로에너지 건축물 확산을 위한 건물 일체형 태양광 적용방안 연구)

  • Park, Seung-Joon;Jeon, Hyun-Woo;Lee, Seung-Joon;Oh, Choong-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.189-199
    • /
    • 2021
  • In order to increase the self-reliance rate of new and renewable energy in order to respond to the mandatory domestic zero-energy buildings, the taller the building, the more limited the site area, and installing PV modules on the roof is not enough. Therefore, BIPV (Building integrated photovoltaic, hereinafter BIPV) is the industry receiving the most attention as a core energy source that can realize zero-energy buildings. Therefore, this study conducted a survey on the problems of the BIPV industry in a self-discussing method for experts with more than 10 years of experience of designers, builders, product manufacturers, and maintainers in order to suggest the right direction and revitalize the BIPV industry. Industrial problems of BIPV adjustment are drawn extention range of standard and certification for products, range improvement for current small condition of various kind productions, need to revise standards for capable of accomodating roof-type, color-module and louver-module, necessary of barrier in flow of foreign modules into korea through domestic certification mandatory, difficulty in obtaining BIPV information, request to prevent confusion among participants by exact guidelime about architectural application part of BIPV, and lack of the BIPV definition clearness, support policy, etc. Based on the improvements needed for the elements, giving change and competitiveness impacts aims to present and propose counter measures and direction.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

Dosimetric Evaluation of Low-Dose Spillage Volumes for Head and Neck Cancer Using Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Treatment Techniques

  • Kumar, Gourav;Bhushan, Manindra;Kumar, Lalit;Kishore, Vimal;Raman, Kothanda;Kumar, Pawan;Barik, Soumitra;Purohit, Sandeep
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • Purpose: This study was designed to investigate the dosimetric difference between intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) in head and neck cancer (HNC). The study primarily focuses on low-dose spillage evaluation between these two techniques. Methods: This retrospective study involved 45 patients with HNC. The treatment plans were generated using the IMRT and VMAT techniques for all patients. Dosimetric comparisons were performed in terms of target coverage, organ-at-risk (OAR) sparing, and various parameters, including conformity index, uniformity index, homogeneity index, conformation number, low-dose volumes, and normal tissue integral dose (NTID). Results: No significant (P>0.05) difference in planning target volume coverage (D95%) was observed between IMRT and VMAT plans for supraglottic larynx, hard palate, and tongue cancers. A decrease in dose volumes ranging from 1 Gy to 30 Gy was observed for VMAT plans compared with those for IMRT plans, except for V1Gy and V30Gy for supraglottic larynx cancer and V1Gy for tongue cancer. Moreover, decreases (P<0.05) in NTID were observed for VMAT plans compared with that for IMRT plans in supraglottic larynx (4.50%), hard palate (12.80%), and tongue (7.76%) cancers. In contrast, a slight increase in monitor units for VMAT compared with those for IMRT in supraglottic larynx (0.46%), hard palate (2.54%), and tongue (7.56%) cancers. Conclusions: For advanced-stage HNC, both IMRT and VMAT offer satisfactory clinical plans. VMAT offers a conformal and homogeneous dose distribution with comparable OAR sparing and higher dose falloff outside the target volume than IMRT, which provides an edge to reduce the risk of secondary malignancies for HNC over IMRT.

Development of Flood Rapid Defense System(FRDS) suitable for Southeast Asian Disaster (동남아시아 재난에 적합한 도심형 홍수임시차수시스템 개발)

  • Jung, In-Su;Oh, Eun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.8-17
    • /
    • 2018
  • A large urban region in Bangkok, Thailand is often inundated due to shallow water floods along the paved roads that have poor drainage facilities, and that can cause urban flooding. Existing methods, including using sand bags are not effective to prevent flooding in urban areas where the amount of sand is not sufficient. Thus, it is necessary to install artificial flood defense structures. However flooding and overflow defense equipment, which was developed in some advanced nations in Europe and in the USA, is highly expensive and complex construction methods are needed, therefore they are not suitable to be used in Southeast Asia. Thus, it is necessary to develop a flood rapid defense system(FRDS), which is inexpensive and simple to build, but is also highly functional. Thus, this study developed an FRDS that can be applied to Southeast Asia through the careful study of FRDS overviews, an analysis on the development trends in Korea and overseas, and the proposal of development needs and directions of the region. For the system developed, Korean Standards(KS) performance evaluations on leakage ratio deformation tests and impact resistance tests were conducted at the Outdoor Demonstration Test Center(Seosan) in the Korea Conformity Laboratories(KCL) and the system satisfied the standards of KS F 2639(leakage and deformation test) and KS F 2236(impact resistance test). The present study results can not only be applied to urban floods in Southeast Asian nations to cope with flood-related disasters, but also be utilized in flood prone regions and for major facilities in Korea. They can also induce scientific and pro-active responses from major local governments and facility management organizations in relation to urban floods.

Quantification of Chloride Diffusivity in Steady State Condition in Concrete with Fly Ash Considering Curing and Crack Effect (재령 및 균열효과를 고려한 플라이애시 콘크리트의 정상상태 염화물 확산 특성의 정량화)

  • Yoon, Yong-Sik;Cheon, Ju-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • In case of the cracks in concrete, the penetration of deterioration ions such as chloride ions in to cracks is accelerated. According to the penetration of chloride ions, structural and durability problems to RC(Reinforced Concrete) structures are caused. In this study, the accelerated chloride diffusion coefficient which is in steady state is evaluated for 2 year aged normal and high strength FA(Fly Ash) concrete, after a range of crack depths are induced up to 1.0 mm in 56 aged day. Considering crack effect by linear regression analysis, high strength concrete has slightly less increasing ratio of diffusion coefficient by crack than normal strength concrete, and diffusion coefficient increases non-linearly as crack width is increased. Also, In two types of concrete, crack effect decrease as the curing period increase. In the case of quantifying crack and curing effect by using exponential function form, the coefficients of determination are higher than those of linear regression analysis. Under steady state, it is thought that there is not a high correlation between the crack effect and the curing effect, and considering the two independent effects, it is believed that reasonable prediction equation for diffusion of concrete with crack can be proposed.

Study on Characteristics of Change of Physical/Chemical Property in Domestic Aviation Fuel by the Quality Monitoring Analysis (국내 항공유(Jet A-1) 품질모니터링을 통한 물성 변화 특성 연구)

  • Doe, Jin-woo;Youn, Ju-min;Jeon, Hwa-yeon;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1327-1337
    • /
    • 2018
  • Aviation fuel oil is more strictly controlled than other transport fuels because it can lead to major accidents in the event of a problem. The quality standards of the aircraft are specified by the domestic Korean Standard, the American Society for Testing and Materials and the International Air Transport Association, respectively. From 2016 to 2017, the quality analysis of 6 items such as aromatic content, sulfur content and distillation characteristics was carried out on the jet fuel produced at five domestic refineries. Domestic production of jet fuel has been shown to be in conformity with the quality standards and has been maintained at a constant level throughout the year. Compared with the specification of ASTM and IATA the aromatic content of domestic KS specification is set to be strictly 1.5 wt% higher than the ASTM and IATA setting specification, but it satisfies this specification sufficiently. In addition, other items such as sulfur content, distillation property and flash point satisfied both domestic and international specification.

A Basic Study of Verbs List for Vocabulary Learning Based on Augmented Reality (증강현실 기반 어휘 지도에서 동사 목록에 대한 기초 연구)

  • Hwang, BoMyung;Kwon, SoonBok;Kim, SeonJong;Shin, BeomJoo
    • 재활복지
    • /
    • v.21 no.2
    • /
    • pp.233-246
    • /
    • 2017
  • The present study is a basic study for application of Augmented Reality (AR) to verb teaching for children with language developmental disorders and is intended to examine validity for the list of verbs at the beginning of development. To confirm the validity of the verbs list, the appropriateness of the verbs was evaluated by three professors with certification of KSLP (Korean Speech-Language Pathologist) working in the department of Speech-Language Pathology at the university. The motion validity test was conducted by showing motion implemented as AR to eight master's students in Speech-Language Pathology major, having them record verbs that came to their mind, and evaluating in the conformity. The second motion validity test was conducted by using 5-point Likert scales to 87 undergraduates in Speech-Language Pathology major and having them see the motions in AR and marked the degrees to which them see the motions conform to the relevant verbs on the scales. Using the SPSS 21.0 program, descriptive statics analyses of the results were conducted. Through this all process, thirty verbs were selected as having content validity. It could be seen that when AR based communication system are applied, things and backgrounds that complement the insufficient movements of motions and help motion recognition should be also provided. In future studies, the 3D images of the AR based communication system will be complemented and the content validity will be verified with typically developing children and the children with language developmental disorders.

A Study on Prediction Model Conformity of Line Source in Urban Area (도시지역에서의 선오염원 예측모델 적합성에 관한 연구)

  • Kim, Jin Hong;Park, Sun hwan;Chang, Yoon young
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • Despite the limitations and difficulty in the application of CALINE3 model for air dispersion prediction of roads and tunnels construction businesses in South Korea, the model is being used in all roads construction projects. This study compared the predicted values of CALINE3 and AERMOD model that is suggested by the US EPA, to the values of GRAL model, a Lagrangian particle tracking model developed in Europe, by applying the models to the existing roads of the urban areas. The result showed low relevance to the actual measurement value in the case of CALINE3 model, thus displaying a low trusted value when applying to the urban areas. In the case of using AERMOD model, the predicted values were overly expressed compared to the actual measurement value, thus leading to the need of adding a No2 conversion method to the model in the future. In the case of GRAL model, a Lagrangian particle tracking model, the relevance between the actual and predicted values were high as the model considers the surrounding topography and the buildings all together, thus confirming that the model can be used for air dispersion prediction of the roads in the urban areas. Lastly, the result of this study testing the air prediction models in Jeongneung Measuring Station points that it is necessary for the future studies to expand the testing areas and test the validity of the models continuously.

Development of AAB (Algorithm-Aided BIM) Based 3D Design Bases Management System in Nuclear Power Plant (Algorithm-Aided BIM 기반 원전 3차원 설계기준 관리시스템 개발)

  • Shin, Jaeseop
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.28-36
    • /
    • 2019
  • The APR1400 (Advanced Power Reactor 1400MW) nuclear power plant is a large-scale national infrastructure facility with a total project cost of 8.6 trillion won and a project period of 10 years or more. The total project area is about 2.17 million square meters and consists of more than 20 buildings and structures. And the total number of drawings required for construction is about 65,000. In order to design such a large facility, it is important to establish a design standard that reflects the design intent and can increase conformity between documents (drawings). To this end, a design bases document (DBD) reflecting the design bases that extracted in regulatory requirements (e.g. 10CFR50, Korean Law, etc.) is created. However, although the design bases are important concepts that are a big framework for the whole design of the nuclear power plant, they are managed in 2-dimensional by the experts in each field fragmentarily. Therefore, in order to improve the usability of building information, we developed BIM(Building Information Model) based 3-dimensional design bases management system. For this purpose, the concept of design bases information layer (DBIL) was introduced. Through the simulation of developed system, design bases attribute and element data extraction for each DBIL was confirmed, and walls, floors, doors, and penetrations with DBIL were successfully extracted.

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.