• Title/Summary/Keyword: Conformational stability

Search Result 71, Processing Time 0.026 seconds

Computational Study on Oligomer Formation of Fibril-forming Peptide of α-Synuclein

  • Park, Seong-Byeong;Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.848-854
    • /
    • 2012
  • We have studied the oligomerization of a fibril-forming segment of ${\alpha}$-Synulcein using a replica exchange molecular dynamics (REMD) simulation. The simulation was performed with trimers and tetramers of a 12 amino acid residue stretch (residues 71-82) of ${\alpha}$-Synulcein. From extensive REMD simulations, we observed the spontaneous formation of both trimer and tetramer, demonstrating the self-aggregating and fibril-forming properties of the peptides. Secondary structure profile and clustering analysis illustrated that antiparallel ${\beta}$-sheet structures are major species corresponding to the global free energy minimum. As the size of the oligomer increases from a dimer to a tetramer, conformational stability is increased. We examined the evolution of simple order parameters and their free energy profiles to identify the process of aggregation. It was found that the degree of aggregation increased as time passed. Tetramer formation was slower than trimer formation and a transition in order parameters was observed, indicating the full development of tetramer conformation which is more stable than that of the trimer. The shape of free energy surface and change of order parameter distributions indicate that the oligomer formation follows a dock-and-lock process.

Substrate Construes the Copper and Nickel Ions Impacts on the Mushroom Tyrosinase Activities

  • Gheibi, N.;Saboury, A.A.;Haghbeen, K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.642-648
    • /
    • 2006
  • Mushroom tyrosinase (MT) structural changes in the presence of $Cu ^{2+}$ and $Ni ^{2+}$ were studied separately. Far-UV CD spectra of the incubated MT with the either of the metal ions indicated reduction of the well-ordered secondary structure of the enzyme. Increasing in the maximum fluorescence emission of anilinonaphthalene-8-sulfonic acid (ANS) was also revealing partial unfolding caused by the conformational changes in the tertiary structure of MT. Thermodynamic studies on the chemical denaturation of MT by dodecyl trimethylammonium bromide (DTAB) showed decrease in the stability of MT in the presence of $Cu ^{2+}$ or $Ni ^{2+}$ using their activation concentrations. Both activities of MT were also assessed in the presence of different concentrations of these ions, separately, with various monophenols and their corresponding diphenols. Kinetic studies revealed that cresolase activity on p-coumaric acid was boosted in the presence of either of the metal ions, but inhibited when phenol, L-tyrosine, or 4-[(4-methylphenyl)azo]-phenol was substrate. Similarly, catecholase activity on caffeic acid was enhanced in the presence of $Cu ^{2+}$ or $Ni ^{2+}$, but inhibited when catechol, L-DOPA, or 4-[(4-methylbenzo)azo]-1,2-benzenediol was substrate. Results of this study suggest that both cations make MT more fragile and less active. However, the effect of the substrate structure on the MT allosteric behavior can not be ignored.

Properties of Trypsin-Mediated Activation of Aspartase from Hafnia alvei

  • Lee, Min-Sub;Choi, Kyoung-Jae;Kwom, Si-Joong;Kang, In-Sug;Ha, Joo-Hun;Kim, Sung-Soo;Han, Myung-Soo;Yoon, Moon-Young
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.573-578
    • /
    • 1999
  • Treatment of Hafnia alvei aspartase with limited tryptic digestion resulted in a marked increase in enzymatic activity. The activation required a few minutes to attain maximum level and, thereafter, the activity gradually decreased to complete inactivation. The degree of cleavage associated with the activation was extremely small as judged by SDS-PAGE. Upon activation, the optimum pH and temperature were essentially unchanged. When trypsin-activated enzyme was denatured in 4 M guanidine-HCI followed by removal of the denaturant by dilution, the restoration of activity was similar (40%) to that of the native enzyme, indicating a degree of stability. The $pK_a$ obtained on the acidic side and the $pK_b$ obtained on the basic side of trypsin-activated aspartase were 6.6 and 8.6, respectively, the same as those of the native aspartase, indicating that aspartase may exist in a stable conformation after limited tryptic digestion. These results indicate that the activation of H. alvei may be mediated by a conformational change away from the active site of individual subunits.

  • PDF

Immunization with a soluble CD4-gp120 complex preferentially induces neutralizing anti-Human Immunodeficiency Virus Type lantibodies directed to conformation-dependent epitopes of gp120 (수용성 CD-gp120 결합체의 면역화로 유도된 항 gp120 항체의 특성에 관한 연구)

  • Kang, Chang-Yuil
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.61-67
    • /
    • 1994
  • One fundamental problem in developing an AIDS vaccine is antigenic variation of HIV. Despite a substantial induced immune response in gp120-immunized monkeys and humans, high titers of V3-directed type specific neutralizing antibodies may not be sufficient to neutralize continuously emerging new isolates. Several studies analyzing anti-gp120 antibodies in HIV-infected individuals have clearly indicated that most broadly neutralizing antibodies are directed to conformation-dependent epitopes. Therefore, it seems important to evaluate the potential efficacy of candidate gp120 vaccines at inducing such antibodies, that might be potentially protective against multiple HIV strains. One concern in the development of any recombinant protein as a vaccine is its stability when mixed with an adjuvant. This could be a particularly important factor for recombinant gp120, given the conformational nature of its major, broadly neutralizing, epitopes. We hypothesized that gp120 complexed with recombinant CD4 could stabilize the conformation-dependent epitopes and effectively deliver these epitopes to the immune system. In this study, a soluble gp120-CD4 complex in Syntex Adjuvant Formulation was tested in mice to analyze the anti-gp120 antibody response. With the aim of defining the fine specificity and neutalizing activities of the immune response, 17Mabs were generated and characterized. The studies indicate that the gp120-CD4 complex elicits neutralizing anti-gp120 antibodies, most of which are directed to the conformation dependent epitopes.

  • PDF

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.

A Study on Processes and Performance Evaluation for IR Camouflage Printed Selectively Permeable Membrane Fabrics (위장 날염된 선택 투과성 화생방 직물의 제조 공정연구 및 성능평가)

  • Jeong, Yong-Kyun;Moon, Sang-Hyun;Kang, Jae Sung;Seo, Hyeon Kwan;Park, Hyen Bae
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • The object of this research is to perform the basic research for the development of selectively permeable membrane fabrics which is suitable for korean military in sense of embattlement. As a key factor of selectively permeable membrane fabrics which is suitable for korean military, this study selected the best PVA thickness and membrane selection for DMMP protection, pre-treatment method for conformational stability of face fabric and water/oil repellent process condition. Especially as the PVA coating thickness of the fabrics increase, peneration of DMMP decrease including water vapor permeation is lower. This study shows how physical features and permeability of chemical agents can be influenced by pre-treatment methods, the selection of selectively permeable membrane, the thickness of PVA etc. Results showed that outer shell / PVA / e-PTFE materials possessed performance with superior water vapor permeation (Over $3,000g/m^2/day$) and protective capability against DMMP vapor ($0.6{\mu}g/cm^2{\cdot}16hr$).

mPW1PW91 Conformational Study of Di-t-butyl-dinitro-tetramethoxysulfonylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • The structures of the conformers for 1,3-di-t-butyl-2,4-dinitro-tetramethoxysulfonylcalix[4]arene (1) and 1,2-di-t-butyl-3,4-dinitro-tetramethoxysulfonylcalix[4]arene (2) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and the differences between the various conformations (cone, partial-cone (PC), 1,2-alternate, and 1,3-alternate) of 1 and 2. For both compounds, the 1,3-alternate (1,3-A) conformers were calculated to be the most stable, which correlate very well with the experimental results. The orderings of the relative stability of 1 and 2 that resulted from the mPW1PW91/6-31G(d,p) calculations are the following: 1: 1,3-A (syn) > PC (syn) > PC (anti) > 1,2-A (anti) > CONE (syn); 2: 1,3-A (anti) > PC (anti) > PC (syn) > 1,2-A (anti) > 1,2-A (syn) > CONE (syn). The BLYP/6-31G(d) calculated IR spectra of the most stable 1,3-A conformers of 1 and 2 are compared.

Conductometric Behavior of Univalent Cation-Podand Complexes in Methanol

  • Kim, Dae-Yeon;Jung, Jong-Hwa;Chun, Jae-Sang;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.967-971
    • /
    • 1994
  • The stability constants, log K of the 1 : 1 complexation for IA ions, $Ag^+$, and $Tl^+$ with a series of podands having different aromatic end-groups (I-IV) have been determined conductometrically in methanol at 25.0 $^{\circ}$C. Exceptionally the equivalent conductivity, ${\lambda}_{eq}\;of\;Li^+\;and\;Na^+$ were increased by the addition of I, because the complexed ions are less mobile than solvated ions. The order of log K values for I was $Ag^+{\gg}Tl^+>K^+>Na^+>Rb^+>Cs6+>Li^+$. The log K sequence of the podands for the certain cations was I>II>III${\geq}$IV. And every podands except IV showed the maximum selectivity for $Ag^+$ among the cations. These results were discussed in terms of the aromatic end-group effects, such as hetero-donor atoms or conformational changes by ${\pi}-{\pi}$ stacking interactions. The detailed conformations of ${\pi}-{\pi}$ stacking were also discussed by the observations of upfield shifts of some aromatic protons upon complexation from $^1H$ NMR spectra.

Backbone hydrogen bonding interaction of the inactive isoform of type III antifreeze proteins studied by 1H/15N-HSQC spectra

  • Seo-Ree, Choi;Sung Kuk, Kim;Jaewon, Choi;Joon-Hwa, Lee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.46-50
    • /
    • 2022
  • Antifreeze proteins (AFPs) bind to the ice crystals and then are able to inhibit the freezing of body fluid at subzero temperatures. Type III AFPs are categorized into three subgroups, QAE1, QAE2, and SP isoforms, based on differences in their isoelectric points. We prepared the QAE2 (AFP11) and SP (AFP6) isoforms of the notched-fin eelpout AFP and their mutant constructs and determined their temperature gradients of amide proton chemical shifts (𝚫δ/𝚫T) using NMR. The nfeAFP11 (QAE2) has the distinct 𝚫δ/𝚫T pattern of the first 310 helix compared to the QAE1 isoforms. The nfeAFP6 (SP) has the deviated 𝚫δ/𝚫T values of many residues, indicating its backbone conformational distortion. The study suggests the distortion in the H-bonding interactions and backbone conformation that is important for TH activities.

Population and Interconversion of Neutral and Zwitterionic Forms of L-Alanine in Solution

  • Kang, Young-Kee;Byun, Byung-Jin;Kim, Yong-Hyun;Kim, Yun-Ho;Lee, Dong-Hwa;Lee, Joo-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1149-1156
    • /
    • 2008
  • The conformational study on neutral and zwitterionic L-alanines (N-Ala and Z-Ala, respectively) and the transition state (TS) for their interconversion is carried out using ab initio HF and density functional B3LYP methods with the self-consistent reaction field method in the gas phase and in solution. At both the HF and B3LYP levels of theory, the local minimum N1 for N-Ala is found to be most preferred in the gas phase and a weak asymmetric bifurcated hydrogen bond between the amino hydrogens and the carbonyl oxygen appears to play a role in stabilizing this conformation. The local minima N2a and N2b are found to be the second preferred conformations, which seem to be stabilized by a hydrogen bond between the amino nitrogen and the carboxylic hydrogen. The relative stability of the local minimum N2b is remarkably increased in solution than that in the gas phase. The local minimum N2b becomes more stable than the local minimum N2a in most of the solution. On the whole the relative free energies of Z-Ala and TS become more lowered, as the solvent polarity increases. N-Ala prevails over Z-Ala in aprotic solutions but Z-Ala is dominantly populated in ethanol and water. In aprotic solutions, the population of Z-Ala increases somewhat with the increase of solvent polarity. The barrier to Z-Ala-to-N-Ala interconversion increases on the whole with the increase of solvent polarity, which is caused by the increase of stability for Z-Ala.