• Title/Summary/Keyword: Conformational change

Search Result 196, Processing Time 0.029 seconds

CDDP induces conformational changes in BTV ds RNA rather than forming protein-protein and/or protein-RNA crosslink (cis-Diamminedichloroplatinum(II) (CDDP)에 의한 불루텅 바이러스 이중가닥 RNA의 구조변화)

  • Yang, Jai-Myung
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 1991
  • cis-Diamminedichloroplatinum(II)(CDDP), an antitumor drug, did not generate crosslink between bluetongue virus (BTV) capsid protein at moderate concentration. Cesium chloride density gradient centrifugation study revealed that protein-RNA crosslink was not detectable in CDDP treated BTV. CDDP treated BTV ds RNA showed remarkable change in the migration pattern in polyacrylamide gel electrophoresis. These results suggest that the reduction of BTV core associated transcriptase activity is most likely by the CDDP adduction to the genomic ds RNA rather than by the protein-RNA crosslink and/or protein-protein cross-link.

  • PDF

Adsorption Phenomena of Dissolved Whey Protein Concentrates onto Commercial UF Membranes (상용 한외여과막의 Whey Protein Concentrates 흡착거동)

  • 구성희;김정학;황기호;김윤조;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.72-73
    • /
    • 1994
  • Whey는 일명 lactoserum 이라고도 하며 치즈제조시 우유를 응고시키는 과정에서 Casein과 지방으로부터 분리되어 나오는 액상의 부산물로 본래 우유 부피의 약 90%를 차지하며, 용해성 단백질, 유당, 비타민과 무기질 등을 함유하고 있다. 유청에 함유되어 있는 단백질은 건조고형분의 약 13%가 되는데, 주요 단백질은 $\beta$-lactoglobulin(50%), $\alpha$-lactalbumin(22%), Serum albumin(5%), Immunoglobulin(12%), Proteose-peptone(10%) 등이 있다. 유청단백질중 가장 많이 함유되어 있는 $\beta$-lactoglobulin은 구형의 단백질로 단량체의 분자량은 약 18,400이며, pH 3.5~7 범위내에서는 해리되지 않는 이량체(dimer)를 형성한다. pH 3.5 이하에서 이량체는 해리되고 다량체의 형성으로 재평성한다. pH 7.0 이상의 알칼리 영역에서는 Conformational Change가 일어나는 것으로 알려져 있으며, 등전점(isoelectric point)은 pH 5.2이다. $\alpha$-lactalbumin은 14,200의 분자량을 가지는 구형의 단백질로 등전점은 pH 4.8이다.

  • PDF

Biomedical Application of Phosphoproteomics in Neurodegenerative Diseases

  • Bahk, Young Yil;Mohamed, Bari;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • Phosphorylation and dephosphorylation of proteins trigger many critical events involved in cellular response, such as regulation of enzymatic activity, protein conformational change, protein-protein interaction, and cellular localization. Any malfunction of protein phosphorylation leads to a diseased state such as diabetes, cancer, and even neurodegenerative diseases. In order to comprehend the molecular view of the complex biological processes of these diseases in depth, very sensitive and detailed analytical methods are necessary for identification of the phosphorylated residues in a protein. As part of these efforts, phosphoproteomics has been developed and applied for the elucidation of neurodegenerative diseases. In this review, we present a brief summary of phosphoproteomics approaches that are now routinely used in biomedical research, and describe the biomedical application of phosphoproteomics especially in Alzheimer's and other neurodegenerative diseases.

CRYSTAL STRUCTURE OF AN UNCLEAVED $\alpha_1$-ANTITRYPSIN WITH SEVEN STABILIZING MUTATIONS AT 2.7 $\{AA}$ RESOLUTION

  • Ryu, Seong-Eon;Park, Hee-Jeong;Kwon, Ki-Sun;Lee, Kee-Nyung;Yu, Myung-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.4-4
    • /
    • 1996
  • $\alpha$$_1$-arantitrypsin, a member of the serpin (serine protease inhibitor) family, undergoes a large structural rearrangement upon the cleavage and insertion of the reactive site loop. This conformational change is driven by the metastability of the native serpin structures and has an important role in the regulation of the inhibitory-serpin function. (omitted)

  • PDF

Conformational Studies of Gaseous Proteins Using Mass Spectrometry

  • Oh, Han-Bin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • Conformations of the +5 to +13 charge state of ubiquitin ions have been studied in the gas phase by an Electron Capture Dissociation (ECD) mass spectrometry (MS) technique. This approach has showed that the conformations of the gaseous ions change from the compact to extended structures as the number of protons on the protein ions increases, consistent with previous collisional cross-section measurements by an ion-mobility MS. However, this observation is in contrast to that of the solution-phase where the unique native structure is usually found. The (un)folding stability and kinetics of these gaseous ions were further investigated experimentally using gradual blackbody-radiation or sudden laser-induced thermal heating, respectively. These studies have provided the evidence that the thermodynamics and kinetics of protein (un)folding in the gas phase are quite different from those of the native aqueous proteins.

  • PDF

Partially Folded States of Mutant Ubiquitin in Mild Denaturing Conditions

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1567-1572
    • /
    • 2009
  • Conformational change of ubiquitin variant with valine to alanine mutation at sequence position 26 was studied by varying solvent pH. Fluorescence emission spectra indicated that this variant ubiquitin has some residual structures in acidic and basic solution as compared to denaturant-induced unfolded state. Far-UV circular dichroic spectra indicated that the base-denatured state had more secondary structure than the acid-denatured state. Near-UV circular dichroic spectra indicated that the aromatic side-chains were in the relatively more rigid environment in the base-denatured state than those in the acid-denatured state. Although it appears that the more tertiary structure present in the base-denatured state, refolding reactions measured by stopped-flow fluorescence device suggest that both the acid- and base-denatured states occur before the major folding transition state. The acid- and base-denatured states are considered to reflect the early event of protein folding process.

Structure of CT16 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Lee, Kyoung-Ik;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 2004
  • C-terminal fragments of APP (APP-CTs), that contain complete Abeta sequence, are found in neuritic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT16, Lys649-Asp664 (KKQYTSIHHGVVEVD) has been known as the most toxic part in the C-terminal fragment of amyloid precursor protein (APP). The solution structure of CT16 was investigated using NMR spectroscopy in various membrane-mimicking environments. According to Circular Dichroim (CD) spectra, CT16 has a random structure in aqueous solution, while conformational change was induced by addition of TFE and SDS micelle. Tertiary structure as determined by NMR spectroscopy shows that CT16 has a ${\beta}$-turn conformation in trifluoroethanol-containing aqueous solution.

  • PDF

Characterization of pH-dependent structural properties of hydrolase PncA using NMR

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.144-148
    • /
    • 2018
  • Catalytic enzyme Pyrazinamidase (PncA) from Mycobacterium tuberculosis can hydrolyze substrate pyrazinamide (PZA) to pyrazoic acid (POA) as active form of compound. Using NMR spectroscopy, pH-dependent catalytic properties were monitored including metal binding mode during converting PZA to POA. There seems to be a conformational change through zinc binding in active site from the perturbation of peak intensities in series of 2D HSQC spectra the conformation changes through zinc binding.

Effect of salt on membrane protein Caveolin3 proved with NMR spectroscopy

  • Byoungduck Park;Ji-Hun Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.3
    • /
    • pp.10-14
    • /
    • 2024
  • Caveolin3, mainly expressed in muscle tissue types, is a structural scaffolding protein of caveolae which are microdomains of plasma membrane. To elucidate the relationship between structure and function, several studies on the structure of caveolins using NMR have been reported. Because the ionic strength can affect the electrostatic-driven association of proteins with ligand and protein structure, the effect of salt in the structural studies has to be considered. In this work, we observed that the chemical shifts of Cav3 in the LPPG detergent change depending on salt concentration. The R2 values also show salt concentration-dependent changes. Specifically, in the N-terminal region where conformational changes and various interactions occur, the R2 values decrease. Interestingly, the R2 values of residues expected to be located in the LPPG detergent are also influenced by the salt concentration. This work suggests that the concentration of NaCl can affect interpretation of NMR data from membrane proteins.

A Study on the Effects of Muscle Membrane in Tension Development by Computer Image (컴퓨터 영상으로 장력발생이 근육 미치는 영향에 관한 연구)

  • Shin Seung-Soo;Kim Duck-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.71-77
    • /
    • 2005
  • On contraction of the muscles, marked changes in X-ray reflections are observed, suggesting that conformational changes of contractile molecules and the movement of myosin heads during muscle contraction. It was found that the successive twitches decreased not only the time needed to the peak tension after the onset of stimulation but also the time needed to the maximum change of the X-ray intensity. However, the difference of the time between the peak tension and the maximum intensity change$(T_i-I_i)$ is nearly the same at any twitch.

  • PDF