• Title/Summary/Keyword: Conformality

Search Result 30, Processing Time 0.031 seconds

Highly Conformal Deposition of Pure Co Films by MOCVD Using Co2(CO)8 as a Precursor (Co2(CO)8 (Dicobalt Octacarbonyl) 전구체를 이용한 MOCVD Co 박막의 균일한 증착 특성 및 높은 순도에 관한 연구)

  • Lee, Jeong-Gil;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.106-110
    • /
    • 2006
  • We have investigated the effect of the experimental variables such as temperature and pressure on conformality of Co films deposited over high aspect ratio trenches using $Co_2(CO)_8$ as a precursor. The results show that the conformality of Co films is a strong function of temperature and process pressure. Lowering the pressure and temperature significantly improves the conformality. As the pressure decreases from 0.6 Torr to 0.2 Torr at $50^{\circ}C$, the bottom coverage of Co films over $0.2{\mu}m$ width trenches with an aspect ratio of 13 to 1 significantly increases to 85%. However, further increasing the temperature from 50 to $60^{\circ}C$ at the pressure of 0.2 Torr degrades the bottom coverage to 14%. In contrast, the extremely low pressure of 0.03 Torr allows the excellent conformal deposition of Co films up to $70^{\circ}C$. This can be attributed to the suppression of homogeneous reaction in the gas phase, which can create the intermediate products with high sticking coefficient. In addition, the Co films deposited at $50^{\circ}C$ show the low resistivity with negligible contamination. As a result, the newly developed Co process using MOCVD can be implemented into the next generation devices with complex shapes.

ALD of Nanometal Films and Applications for Nanoscale Devices

  • Kim, Hyung-Jun
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Among many material processing related issues for successful scaling down of devices for the next 10 years or so, the advanced gate stack and interconnect technology are two most critical research areas, which need technical innovation. The introduction of new metallic films and appropriate processing technologies are required more than ever. Especially, as the device downscaling continues well into sub 50 nm regime, the paradigm for metal nano film deposition technique research has been shifted to high conformality, low growth temperature, high quality with uniformity at large area wafers. Regarding these, ALD has sparked a lot of interests for a number of reasons. The process is intrinsically atomic in nature, resulting in the controlled deposition of films in sub-monolayer units with excellent conformality. In this paper, the overview on the current issues and the future trends in device processing technologies related to metal nano films as well as the R&D trends in these applications will be discussed. The focus will be on the applications for metal gate, capacitor electrode for DRAM, and diffusion barriers/seed layers for Cu interconnect technology.

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Surface Morphology and Hole Filling Characteristics of CVD Copper (CVD법에 의해 성막된 구리의 표면 형상 및 충진 특성에 관한 연구)

  • Kim, Duk-Soo;Sunwoo, Changshin;Park, Don-Hee;Kim, Jin-Hyuk;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.98-102
    • /
    • 2005
  • This article describes a study of chemical vapor deposition (CVD) of copper thin films on TiN substrates using (HFAC)Cu(DMB) as a precursor. The surface morphology and conformality of the Cu films as functions of substrate temperature and the presence or absence of iodine have been investigated. The surface roughness was increased significantly along with decrement of the step coverage by increasing the deposition temperature. The highest conformal films with the lowest surface roughness were obtained using the process of copper CVD, where iodine vapor were discretely introduced into the reactor during the growth of copper.

Aluminum Coating on A12O3 Powders in Fluidized Bed Reactor at Atmospheric Pressure (유동반응관을 이용한 상압에서의 알루미나 분말의 알루미늄 증착)

  • 강창용
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1994
  • Aluminum was deposited on aluminum oxide powders using a fluidized bed reactor at atmospheric pressure. The aluminum oxide powders were irregular flakes with acute angles and the average particle size was 26 $\mu\textrm{m}$. The fluidized bed was formed by flowing argon gas at the velocity of 60 cm/sec. The optimal fluidization condition was obtained with the reactor designed to be tapered so that the fluid velocity decreases as the fluidizing gas goes up along the reactor. Aluminum was deposited by flowing TiBA(Triisobutylaluminum) evaporated at$250^{\circ}C$ through the fluidized bed reactor heated to 350~$450^{\circ}C$. The result from the analysis by XRD and EDAX confirmed the coating of aluminum and an SEM micrograph showed the conformality.

  • PDF

스퍼터 증착을 이용한 선택적 투과막 형성

  • Jeong, So-Un;Lee, Seung-Yun;Im, Jeong-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.76-76
    • /
    • 2011
  • 투명 태양전지 구조 내에 선택적 투과막을 채용하여 태양전지의 성능 개선을 극대화할 수 있다. 금속 산화물 계의 선택적 투과막은 가시광선 대역은 투과시키고, 적외선 영역은 광흡수층으로 반사시키는 역할을 하므로 변환효율이 증가한다. 이제까지 Al 및 Ti 산화물 계의 선택적 투과막은 atomic layer deposition (ALD)을 이용하여 형성하여 왔다[1]. ALD 기술의 경우 정밀한 두께 조절성 및 우수한 conformality의 장점이 있지만, 증착속도가 느리기 때문에 상업적으로 이용하기에 제약이 있다. 따라서 본 연구에서는 Al/Ti 산화물 투과막을 기존의 ALD 공정이 아닌 스퍼터(sputter) 증착을 이용하여 형성하고, 광학적 특성을 평가하였다. 스퍼터 증착 공정을 이용하여 선택적 투과막을 형성함으로써 기존의 공정에 비하여 태양전지 제조 원가 절감의 효과가 있을 것이라 판단된다.

  • PDF

Control of solid oxide fuel cell ceramic interfaces via atomic layer deposition (원자층 증착법을 통한 고체산화물 연료전지의 세라믹 인터페이스 제어)

  • Seo, Jongsu;Jung, WooChul;Kim, Jeong Hwan
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.132-144
    • /
    • 2020
  • Solid oxide fuel cell (SOFC) have attracted much attention due to clean, efficient and environmental-friendly generation of electricity for next-generation energy conversion devices. Recently, many studies have been reported on improving the performance of SOFC electrodes and electrolytes by applying atomic layer deposition (ALD) process, which has advantages of excellent film quality and conformality, and precise control of film thickness by utilizing its unique self-limiting surface reaction. ALD process with these advantages has been shown to provide functional ceramic interfaces for SOFC electrodes and electrolytes. In this article, recent examples of successful functionalization and stabilization on SOFC electrodes and electrolytes by the application of ALD process for realizing high performance SOFC cells are reported.

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Ji, Su-Hyeon;Jang, Woo-Sung;Son, Jeong-Wook;Kim, Do-Heyoung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2474-2479
    • /
    • 2018
  • Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel ($Ni(EtCp)_2$) and $O_2$ plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, $O_2$ plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of $100-325^{\circ}C$ and a growth rate of $0.037{\pm}0.002nm$ per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.