• Title/Summary/Keyword: Conformal adhesion

Search Result 12, Processing Time 0.034 seconds

Frog-inspired programmable nano-architectures for skin patches and medical applications

  • Kim, Da Wan;Baik, Sang Yul;Kim, Jungwoo;Kim, Ji Won;Pang, Changhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.366-366
    • /
    • 2016
  • Nanoscale observation of attachment systems of animals has revealed various exquisite multiscale architectures for essential functions such as gecko's locomotion, beetles' wing fixation, octopuses' sucking and crawling. In particular, the hierarchical 3-dimensional hexanonal nano-architectures in the tree frog's adhesion is known to have the capability of the enhancement of adhesion forces on the wet or rough surfaces due to the conformal contacts against rough surfaces and water-drainable micro channels. Here, we report that tree frog-inspired patches using unique artificial 3-dimensional hexagonal structures can be exploited to form reversibly enhanced adhesion against various highly curved and rough surfaces in dry and wet condition. To investigate the adhesion effect of micro-channels, we changed the arrangement of microstructure and spacing gaps between micro-channels. In addition, we introduced the 3-dimensional hexagonal hierarchical architectures to artificial patches to enhance to conformal contacts on the various rough surfaces such as skin and organs. Using the robust adhesion properties, we demonstrated the self-drainable and comfortable skin-attachable devices which can measure EKG (electrokardiogramme) for in-vitro diagnostics. As a result, bio-inspired programmable nano-architectures can be applied in versatile devices such as, medical patches, skin-attachable electronics etc., which would shed light on future smart, directional and reversible adhesion systems.

  • PDF

Development of the Large-area Au/Pd Transfer-printing Process Applying Both the Anti-Adhesion and Adhesion Layers (접착방지막과 접착막을 동시에 적용한 대면적 Au/Pd 트랜스퍼 프린팅 공정 개발)

  • Cha, Nam-Goo
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.437-442
    • /
    • 2009
  • This paper describes an improved strategy for controlling the adhesion force using both the antiadhesion and adhesion layers for a successful large-area transfer process. An MPTMS (3-mercaptopropyltrimethoxysilane) monolayer as an adhesion layer for Au/Pd thin films was deposited on Si substrates by vapor self assembly monolayer (VSAM) method. Contact angle, surface energy, film thickness, friction force, and roughness were considered for finding the optimized conditions. The sputtered Au/Pd ($\sim$17 nm) layer on the PDMS stamp without the anti-adhesion layer showed poor transfer results due to the high adhesion between sputtered Au/Pd and PDMS. In order to reduce the adhesion between Au/Pd and PDMS, an anti-adhesion monolayer was coated on the PDMS stamp using FOTS (perfluorooctyltrichlorosilane) after $O_2$ plasma treatment. The transfer process with the anti-adhesion layer gave good transfer results over a large area (20 mm $\times$ 20 mm) without pattern loss or distortion. To investigate the applied pressure effect, the PDMS stamp was sandwiched after 90$^{\circ}$ rotation on the MPTMS-coated patterned Si substrate with 1-${\mu}m$ depth. The sputtered Au/Pd was transferred onto the contact area, making square metal patterns on the top of the patterned Si structures. Applying low pressure helped to remove voids and to make conformal contact; however, high pressure yielded irregular transfer results due to PDMS stamp deformation. One of key parameters to success of this transfer process is the controllability of the adhesion force between the stamp and the target substrate. This technique offers high reliability during the transfer process, which suggests a potential building method for future functional structures.

Three-Dimensional Nanofabrication with Nanotransfer Printing and Atomic Layer Deposition

  • Kim, Su-Hwan;Han, Gyu-Seok;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.87-87
    • /
    • 2010
  • We report a new patterning technique of inorganic materials by using thin-film transfer printing (TFTP) with atomic layer deposition. This method consists of the atomic layer deposition (ALD) of inorganic thin film and a nanotransfer printing (nTP) that is based on a water-mediated transfer process. In the TFTP method, the Al2O3 ALD growth occurs on FTS-coated PDMS stamp without specific chemical species, such as hydroxyl group. The CF3-terminated alkylsiloxane monolayer, which is coated on PDMS stamp, provides a weak adhesion between the deposited Al2O3 and stamp, and promotes the easy and complete release of Al2O3 film from the stamp. And also, the water layer serves as an adhesion layer to provide good conformal contact and form strong covalent bonding between the Al2O3 layer and Si substrate. Thus, the TFTP technique is potentially useful for making nanochannels of various inorganic materials.

  • PDF

Engineered Stretchability of Conformal Parylene Thin-film On-skin Electronics

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.335-339
    • /
    • 2023
  • Skin-compatible electronics have evolved to achieve both conformality and stretchability for stable contact with deformable biological skin. While existing research has largely concentrated on alternative materials, the potential of Parylene-based thin-film electrodes for stretchable on-skin applications remains relatively untapped. This study proposes an engineering strategy to achieve stretchability using the Parylene thin-film electrode. Unlike the conventional Parylene thin-film electrode, we introduce morphological adaptability via controlled microscale slits in the Parylene electrode structure. The slits-containing device enables unprecedented stretchability while maintaining critical electrical insulation properties during mechanical deformation. Finally, the demonstration on human skin shows the mechanical adaptability of these Parylene-based bioelectrodes while their electrical characteristics remain stable during various stretching conditions. Owing to the ultra-thinness of the Parylene coating, the wearable bioelectrode not only achieves stretchability but also conforms to the skin. Our findings broaden the practical use of Parylene thin-film bioelectrodes.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Effects of coating Condition on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Sputtering Method (DC magnetron Sputtering 법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 코팅조건의 영향)

  • 김학동;조성석
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Stainless steel is being used widely lor various purposes due to its good corrosion resistance. There has becn much research to produce colored stainless sterl by several methods. In this experiment, we coated TixN film on the SUS304 substrate with thc DC magnetron sputtering system and studied the internal structurc and adhesive strength of the films as a function of the coating conditions. Before lhe specimen was coated, a sputter etching was very effective in removing the$\delta$ Fe(BCC) phase as well as the contaminant and oxide layer as well as increasing rotghness. Five-stage failure mode appeared with increased scratch load with the TIN films coated on the SUS304 in this manner ; tensile failure-,conformal failure-,buckling failure->chipping failurc and spalling Failure. When the failure was terminated at the initial stage, the film will have good adhesion. But, if syalling failure has occurred at the initial scratch, then the adhesion will be poor. The interlayer between thc coated film and thc substratc was homogeneously adhcsive when the $\gamma'-Fe_4N$ phase wasn't detected in the XRD analysis and the adhesive strength only was reduced by surPace defects. But, when the ,$\gamma'-Fe_4N$N phasc was detected in the XRD analysis, the adhesive strength was very poor.

  • PDF

Fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene -Nanowire Arrays Using Nano Transfer Molding

  • Oh, Hyun-S.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.284-284
    • /
    • 2010
  • We report a fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene nanowires that made on Si substrates by liquid bridge-nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the TIPS-pentacene nanowire and the Si substrate. The patterned TIPS-Pentacene nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF