• Title/Summary/Keyword: Confocal Microscope

Search Result 315, Processing Time 0.03 seconds

Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope (공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구)

  • Lim, Soo-Hee;Kim, Wi-Han;Lee, Ho;Lee, Choon-Young;Park, Cheol-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.

Study of the Effect of Surface Roughness through the Application of 3D Profiler and 3D Laser Confocal Microscope (삼차원 표면 조도 측정기와 삼차원 레이저 공초점 현미경 적용에 따른 표면 거칠기에 대한 영향 연구)

  • Hee-Young Jung;Dae-Eun Kim
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.47-53
    • /
    • 2024
  • Surface topography plays a decisive role in determining the performance of several precision components. In particular, the surface roughness of semiconductor devices affects the precision of the circuit. In this regard, the surface topography of a given surface needs to be appropriately assessed. Typically, the average roughness is used as one of the main indicators of surface finish quality because it is influenced by both dynamic and static parameters. Owing to the increasing demand for such accurate and reliable surface measurement systems, studies are continuously being conducted to understand the parameters of surface roughness and measure the average roughness with high reliability. However, the differences in the measurement methods of surface roughness are not clearly understood. Hence, in this study, the surface roughness of the back of a silicon wafer was measured using both contact and noncontact methods. Subsequently, a comparative analysis was conducted according to various surface roughness parameters to identify the differences in surface roughness depending on the measurement method. When using a 3D laser confocal microscope, even smaller surface asperities can be measured compared with the use of a 3D profiler. The results are expected to improve the understanding of the surface roughness characteristics of precision components and be used as a useful guideline for selecting the measurement method for surface topography assessment.

THE ANALYSIS OF REMINERALIZATION EFFECT IN FLUORIDE VARNISH USING CONFOCAL LASER SCANNING MICROSCOPE (공초점 레이저 주사 현미경을 이용한 불소 바니쉬 재광화 효과의 분석)

  • Kwon, Ji-Hoon;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • It is well established that fluoride products play an important role in the prevention and remineralization of carious lesion. Fluoride varnish is a concentrated topical fluoride and varnishes adhere to tooth surface, permitting prolonged fluoride exposure and uptake. In this study, the artificial initial enamel caries was caused on the sound human enamel and divided 60 specimens into three groups. Group 1 and group 2 were treated with the topical application of fluoride varnish and stored in artificial saliva for 1 and 2 weeks. Group 3 was stored in artificial saliva for 2 weeks, which acted as control group. Changes in mineral contents were analysed with the confocal laser scanning microscope. The following results were obtained: 1. In group 1 and group 2, the total fluorescence of the lesion(TFL) was reduced in remineralized area compared to in demineralized area(p<0.05). 2. The total fluorescence of the lesion of remineralized area was more reduced in group 2 than in group 1(p<0.05). 3. The total fluorescence of the lesion was more reduced in group 2 than in control group(p<0.05). 4. Confocal laser scanning microscope can be used in quantitative analysis of remineralization by fluoride varnish.

  • PDF

STUDY OF INCIPIENT ENAMEL CARIES USING A DIGITAL ILLUMINATION FIBER-OPTIC TRANSILLUMINATION AND CONFOCAL LASER SCANNING MICROSCOPE (Digital Imaging Fiber-Optic Trans-Illuminational과 Confocal Laser Scanning Microscope를 이용한 초기 법랑질 우식증 연구)

  • Kim, Jae-Tae;Kim, Seung-Oh;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • The purpose of this study were to evaluate the efficacy of the newly developed Digital Imaging Fiber-Optic Trans-illumination (DIFOTI) system in detecting carious lesions in vivo as gold standard with confocal laser scanning microscopy and compared the efficacy of traditional radiography and DIFOTI system in vito as gold standard with confocal laser scanning microscopy, too. For the in vivo study, the subject pool consisted of 23 grammar school age patients just prior to entering the mixed dentition phase Each patient was given a DIFOTI examination of the anterior and posterior teeth. During $6{\sim}8$ months, the naturally expire primary teeth were collected and the efficacy of DIFOTI system was compared with confocal laser scanning microscopy. For in vitro study, 40 primary teeth were collected and decalcified by Carbopol decalcification solution for 1, 2, 4 and 8 days. Every experiment period, all teeth were DIFOTI examined and sectioned to take an image of confocal laser scanning microscopy Sensitivity and specificity were calculated from the result of DIFOTI examine and confocal laser scanning microscopy analysis. The results are as follows : 1. From the in vivo study, the sensitivity of DIFOTI examine was 0. 61 and specificity was 0.63. 2. From the in vivo study, the sensitivity of DIFOTI examine was 0.71 and specificity was 0.75.

  • PDF

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF