• Title/Summary/Keyword: Conflicts of power dissipation

Search Result 2, Processing Time 0.018 seconds

A Novel Test Scheduling Algorithm Considering Variations of Power Consumption in Embedded Cores of SoCs (시스템 온 칩(system-on-a-chip) 내부 코어들의 전력소모 변화를 고려한 새로운 테스트 스케쥴링 알고리듬 설계)

  • Lee, Jae-Min;Lee, Ho-Jin;Park, Jin-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.3
    • /
    • pp.471-481
    • /
    • 2008
  • Test scheduling considering power dissipation is an effective technique to reduce the testing time of complex SoCs and to enhance fault coverage under limitation of allowed maximum power dissipation. In this paper, a modeling technique of test resources and a test scheduling algorithm for efficient test procedures are proposed and confirmed. For test resources modeling, two methods are described. One is to use the maximum point and next maximum point of power dissipation in test resources, the other one is to model test resources by partitioning of them. A novel heuristic test scheduling algorithm, using the extended-tree-growing-graph for generation of maximum embedded cores usable simultaneously by using relations between test resources and cores and power-dissipation-changing-graph for power optimization, is presented and compared with conventional algorithms to verify its efficiency.

  • PDF

Instruction Queue Architecture for Low Power Microprocessors (마이크로프로세서 전력소모 절감을 위한 명령어 큐 구조)

  • Choi, Min;Maeng, Seung-Ryoul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.56-62
    • /
    • 2008
  • Modern microprocessors must deliver high application performance, while the design process should not subordinate power. In terms of performance and power tradeoff, the instructions window is particularly important. This is because a large instruction window leads to achieve high performance. However, naive scaling conventional instruction window can severely affect the complexity and power consumption. This paper explores an architecture level approach to reduce power dissipation. We propose a low power issue logic with an efficient tag translation. The direct lookup table (DTL) issue logic eliminates the associative wake-up of conventional instruction window. The tag translation scheme deals with data dependencies and resource conflicts by using bit-vector based structure. Experimental results show that, for SPEC2000 benchmarks, the proposed design reduces power consumption by 24.45% on average over conventional approach.