• Title/Summary/Keyword: Confinement Convergence Method

Search Result 16, Processing Time 0.018 seconds

2D numerical investigation of twin tunnels-Influence of excavation phase shift

  • Djelloul, Chafia;Karech, Toufik;Demagh, Rafik;Limam, Oualid;Martinez, Juan
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.295-308
    • /
    • 2018
  • The excavation of twin tunnels is a process that destabilizes the ground. The stability of the tunnel lining, the control of ground displacements around the tunnel resulting from each excavation and the interaction between them must be controlled. This paper provides a new approach for replacing the costly 3D analyses with the equivalent 2D analyses that closely reflects the in-situ measurements when excavating twin tunnels. The modeling was performed in two dimensions using the FLAC2D finite difference code. The three-dimensional effect of excavation is taken into account through the deconfinement rate ${\lambda}$ of the soil surrounding the excavation by applying the convergence-confinement method. A comparison between settlements derived by the proposed 2D analysis and the settlements measured in a real project in Algeria shows an acceptable agreement. Also, this paper reports the investigation into the changes in deformations on tunnel linings and surface settlements which may be expected if the twin tunnels of T4 El-Harouche Skikda were constructed with a tunneling machine. Special attention was paid to the influence of the excavation phase shift distance between the two mechanized tunnel faces. It is revealed that the ground movements and the lining deformations during tunnel excavation depend on the distance between the tunnels' axis and the excavation phase shift.

Analysis on interaction of Ground and support using Ground response curve for tunnel design (지반응답곡선을 이용한 지반과 지보재의 상호작용 분석)

  • Ahn, Tae-Hun;Ahn, Sung-Hak;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1059-1064
    • /
    • 2002
  • The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The load-deformation characteristics of ground and support are derived by the interaction between ground and support. The interaction between ground and support is qualitatively illustrated by a ground response curve. The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The interaction between ground and support is qualitatively illustrated by a ground response curve. The convergence-confinement method don't need the basic assumptions for a mathematical model. Also This is applicable to general tunnel. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

  • PDF

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.