• Title/Summary/Keyword: Confined water

Search Result 230, Processing Time 0.027 seconds

The Selection of Optimal Mixing Proportion and Cost Analysis in the SFC (초유동 콘크리트의 최적배합 선정방법 및 경제성 분석)

  • Park, Chil-Lim;Kim, Moo-Han;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.262-268
    • /
    • 1998
  • This research is to examine the selected method of optimal mixing proportion and cost analysis in the super flowing concrete. As confined water $ratio($\beta_p$)$ and K is introduced, itis to establish optimal mixing design of super flowing concrete according to the steps of paste, mortar and concrete. From paste and mortar test, it was led to $$\beta_p$$ and $K_p$satisfying the optimum condions depending on the kinds of binders. Then $$\beta_p$$ and $K_p$ is reflected to the mix condition of super flowing concrete. The result of test, the mix condition of super flowing concrete satisfied the quality performance of concrete with adjustment of additional rate of the superplasticizer. Besides, in case of design strength $350kg/\textrm{cm}^2$ of concrete, material cost in super flowing concrete is able to be reduced 5~16% in replacement of fly ash 30% in ordinary portland cement and slag cement.

  • PDF

A Study on Oil Hydraulic Heat Generation System for Wind Energy Utilization (풍력에너지 이용을 위한 유압식 열변환 장치에 관한 연구)

  • Lee, Il-Young;Gong, Tae-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.402-412
    • /
    • 1995
  • A new energy conversion system which converts wind energy directly to heat instead of transforming it to electric power beforehand is suggested in this study. The new energy conversion system is composed of two big parts divided by their functions. One of them is a wind turbine part, and another is the heat energy conversion part. The object of this study is confined only to the heat energy conversion part, so the wind turbine is replaced with an electric motor for the convenience of experiment. In the experimental process, pressure difference at the hydraulic pump, revolution speed of the hydraulic pump, temperature at a few points on the oil circuit and the water circuit are measured at time intervals of five minutes. And integral values of input energy to the system and stored energy in the system is investigated.

  • PDF

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

A Review on status and development of Physical Oceanography research in Korea (한국 해양물리 연구의 현황과 발전 : 문헌검토)

  • 이흥재;승영호
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.64-81
    • /
    • 1994
  • The trend of physical oceanography research in Korea till 1992 is briefly described. Research papers and activities are reviewed and classified according to the research field and geographic area. so this work ca be served as a reference in planning future researches and surveys. Most of the research areas are confined to the nearshore around the Korean Peninsula and the research field do not extend far beyond the classic subjects of physical properties of water masses and tides. etc. Future researches should thus be oriented to the basin-scale circulation aiming at the national oceanographic tasks such as the formation of the Tsushima Warm current, circulation in the Yellow-East china Seas, and three dimensional circulation of the East (Japan) Sea.

  • PDF

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

Environmental Geochemistry of Atmospheric Mercury: Its Backgriound Concentrations and Exchange Across the Air-Surface Interface (대기수은의 환경지화학: 배경농도측정 및 대기-지표면간의 교환작용)

  • 김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 1996
  • Mercury (Hg) is ubiquitous throughout the earth's atmosphere. The uniqueness of its atmospheric geochemistry is well-known with the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) associated with its high chemical stability. Despite a growing recognition of the environmental significance of its global cycling, the prexisting Korean database for atmospheric Hg is extremely rare and confined to a number of concentration measurements conducted under relatively polluted urban atmospheric environments. To help activate the research on this suvject, an in-depth analysis on the current development in the measurements of atmospheric mercury and the associated fluxes has been made using the most using the most updated data ests reported worldwide. As a first step toward this purpose, the most reliable techniques commonly employed in the measurements of its concentration in the background atmosphere are introduced in combination with the flux measurement techniques over soil surface such as: dynamic enclosure (or field flux chamber) method and field micrometeorological method. Then the results derived using these measurement techniques are discussed and interpreted with an emphasis on its mobilization across the terrestrial biosphere and atmosphere interface. A unmber of factors including air/soil temperature, soil chemical composition, soil water content, and barometric pressure are found out to be influential to the rate and amount of such exchange processes. Although absolute magnitude of such exchange processes is insignificant relative to that of the major component like the oceanic environment, this exchange process is thought to be the the predominant natural pathway for both the mobilization and redistribution of atmospheric Hg on a local or regional scale.

  • PDF

Study on the Behavior of Toe of Drilled Shaft on the Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 연구)

  • Park, Woan-Suh;Jeon, Suk-Won;Han, Yong-Hee;Choi, Se-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.842-847
    • /
    • 2008
  • Despite of the increasing number of the application of the drilled shaft pile in construction site, most of the study of pile capacity has been centered side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use the bearing resistance, so prediction of the toe's movement and characteristic of the bearing capacity is important as the side shear resistance. Therefore the model tests were performed in order to study the characteristic of bearing capacity on rock mass. The material of the test blocks were the mortar which was mixed with sand, cement and water, and test block size was $240{\times}240{\times}240mm$. Load was pressed by the 45mm of diameter of miniaturized pile and plate jack and steal plate were used to the confined stress for representing the underground condition. The relation of load-displacement was measured in many different conditions of rock mass such as direction of discontinuities, spacing and strength, and q-w curves of the toe of the pile were verified in each condition.

  • PDF

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

Removal of Cadmium from Clayey Soil by Electrokinetic Method

  • Niinae, Masakazu;Sugano, Tsuyoshi;Aoki, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • Restoration of contaminated soils to an environmentally acceptable condition is important. One of the newer techniques in soil remediation is a method based on electrokinetic phenomena in soils. The technology uses electricity to affect chemical concentrations and water flow through the pores of soils. An important advantage of electrokinetic soil remediation over other in-situ processes such as soil flushing is the capability of control over the movement of the contaminants. Because the migration of the contaminants is confined by the electric field, there is little dispersion outside the treatment zone. Furthermore, the process is effective for soils with low and variable permeability. In the present study, the distributions of cadmium in the electrokinetic processing of kaolinite under the condition of constant applied voltage are investigated. Cadmium accumulates near the cathode without reducing the diffusion of hydroxide ion into the soil. In keeping the catholyte pH at neutrality, cadmium migrates toward the cathode without any accumulation of cadmium near the cathode and is successfully removed at the cathode reservoir. It was also found that the progress of electrokinetic processing of cadmium could be gasped to a certain extent by monitoring the local voltage and the current density.

  • PDF

The Study about the Performance-Analysis of a Automotive Engine Cooling System (엔진 냉각시스템 성능해석에 관한 연구)

  • Shin, Chang-Hoon;Lee, Seung-Hee;Park, Warn-Gyu;Jang, Gi-Lyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.39-48
    • /
    • 2006
  • An engine cooling system affects overall performances of an engine which has been recently requested higher power in more confined engine room. The design of efficient cooling system demands a great effort to effectively correlate with each components, such as water jacket, radiator, coolant pump, cooling fan, etc. Thus, the aim of this study is to provide the design tool of the cooling system in the early design stage by enabling for the designer to accurately predict the engine cooling performances. This user-friendly design tool has various ways to assemble each components and control the running condition with related database. The present design tool was simulated and compared with experimental data. As a result, the inlet and outlet temperature of the radiator agree very well with experiments. It was concluded that the present design tool could be effectively used for the design of the engine cooling system.