• Title/Summary/Keyword: Configuration Accuracy

Search Result 378, Processing Time 0.029 seconds

Fizeau interferometry using angled end-face optical fiber source (경사 단면 광섬유 광원을 이용한 피조 간섭계)

  • 김학용;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.334-338
    • /
    • 2001
  • A Fizeau interferometer without beam splitter was constructed. Single-mode optical fiber was used as a spherical wave source and the face of fiber end was polished and coated to be a reflecting surface. The reflecting surface was angled so that interference fringe could be detected by CCD camera. Beam splitter in front of a spherical wave source could distort the wave front and that was one of the component error sources. With the proposed configuration there was no need to place beam splitter in the system. Improvement of phase measuring accuracy was evaluated quantitatively by comparing the result of this setup with that of a conventional Fizeau interferometer. Wave front of the angled end-face optical fiber source was also measured to verify its sphericity by PS/PDI (Phase Shifting/Point Diffraction Interferometer). The principle of this technique was presented and the experimental results and its applications were discussed. ussed.

  • PDF

A Study on the Kinematic and Dynamic Analyses of Spatial Complex Kinematic Chain (공간 복합기구연쇄의 기구학 및 동역학 해석에 관한 연구)

  • 김창부;김효식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2543-2554
    • /
    • 1993
  • In this paper, the kinematic and dynamic analyses of spatial complex kinematic chain are studied. Through the new method both using the set of identification numbers and applying the DenavitHartenberg link representation method to the spatial complex kinematic chain, the kinematic configuration of the chain is represented. Some link in the part of closed chain being fictitiously cutted, the complex kinematic chain is transformed to the branched chain. The kinematic constraint equations are derived from the constraint conditions which the cutted sections of the link have to satisfy. And the joint variables being partitioned in the independent joint variables and the dependent joint variables, the dependent variables are calculated from the independent variables by using the Newton-Raphson iterative method and the pseudoinverse matrix. The equations of motion are derived under the independent joint variables by using the principle of virtual work. Algorithms for dynamic analysis are presented and simulations are done to verify accuracy and efficiency of the algorithms.

A Mobile Object Tracking Scheme by Wired/wireless Integrated Street Lights with RFID

  • Cha, Mang Kyu;Kim, Jung Ok;Lee, Won Hee;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.25-35
    • /
    • 2016
  • Since a sophisticated location determination technology (LDT) is necessary for accurate positioning in urban area environments, numerous studies related to the LDT using the RFID (Radio Frequency IDentification) technology have been implemented for real-time positioning and data transferring. However, there are still lots of unsolved questions especially regarding what to use as base stations and what are corresponding results under the intrinsic complexity of alignment and configuration of components used for the RFID positioning. This study proposes the street light fixtures as base stations where the RFID receivers will be embedded for the mobile tracking scheme. As street light fixtures are usually installed at a certain distance interval, they can be used as base stations for the RFID receiver installation. Using the principle of the single row triangle network, the RFID receiver organization is determined based on the experiments such as recognition distance measurement and tag position accuracy estimation at inside and outside of the single row triangle network. The results verify that the mobile tracking scheme which uses RFID-embedded street light fixtures, suggested and configured in this study, is effective for the real-time outdoor positioning.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Performance Predictions of Tilting Pad Journal Bearing with Ball-Socket Pivots and Comparison to Published Test Results (볼 소켓형 피봇을 갖는 틸팅 패드 저널 베어링의 성능 예측 및 기존 결과와의 비교)

  • Kim, Tae Ho;Choi, Tae Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper predicts the rotordynamic force coefficients of tilting pad journal bearings (TPJBs) with ball-socket pivot and compares the predictions to the published test data obtained under load-between-pad (LBP) configuration. The present TPJB model considers the pivot stiffness calculated based on the Hertzian contact stress theory. Due to the compliance of the pivot, the predicted journal eccentricity agree well with the measured journal center trajectory for increasing static loads, while the early prediction without pivot model consideration underestimates it largely. The predicted pressure profile shows the significant pressure development even on the unloaded pads along the direction opposite to the loading direction. The predicted stiffness coefficients increase as the static load and the rotor speed increase. They agree excellently with test data from open literature. The predicted damping coefficients increase as the static load increases and the rotor speed decreases. The prediction underestimates the test data slightly. In general, the current predictive model including the pivot stiffness improves the accuracy of the rotordynamic performance predictions when compared to the previously published predictions.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

Ignition Transient Investigation of Rocket Motor

  • Chang, Suk-Tae;Sam M. Han;John C. Chai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • Ignition transient is a. very rapid process lasting only in the order of 100 milliseconds and therefore it is difficult to measure all relevant ballistic properties. Numerical simulation is thus useful to quantify some of these hard to measure flow and ballistic properties. One-dimensional model was employed to study the effects of aging using simplified aging scenarios for both N-H sustainer and booster motors. Also the effects of newly designed igniter on the ignition of N-H sustainer was simulated. Radiation effects could be significant in terms of energy flux increase to the propellant surface and the energy exchange between the combustion gas itself. One dimension implementation of radiation showed significant effects for rear-mounted igniter. Implementation of radiation effects into 2-D axi-symmetric numerical model was completed and its effects on the N-H sustainer were examined. To have a reliable prediction of computer model on ignition transient, accurate chemical property data on the propellant and igniter gas are required. It was found that such property data on aged N-H motors are not available. Chemical aging model can be used to predict to some degree of accuracy effects of aging on chemical and mechanical properties. Such a model was developed, albeit 2-dimensional, to study migration of moisture through a representative solid rocket motor configuration.

  • PDF

The realization of Load Flow under Graphic Interface I (그래픽 인터페이스를 통한 조류계산 구현 I)

  • Hwang, In-Jun;Kim, Kun-Joong;Kim, Kyu-Wang;Shin, Man-Cheol;O, Sung-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.220-222
    • /
    • 2004
  • In the paper architecture of load flow under graphic interface we mentioned that the define of graphic interface and the way of system modeling. In the view point of engineering, domain define is the step of process which is seek out the general solution. This is a base of program's structure. When making a relationship inner component, relevance and restriction are affected by data type and etc. In this process logical data is realized as a symbol. And system configuration decide that main function and extension by the analysis user's demand and requirements. Specially engineering analysis software has accuracy also through the numerical method. To represent this wee need more powerful graphical component. This helps user's accessibility. We can combine 10, numerical library and graphical component as a system element by domain definition. In this paper we will materialize as a step of implementation and decide a direction of programming. In conclusion we will see the analysis software's necessary function to make a better.

  • PDF

Active auto-focusing of high-magnification optical microscopes (고배율 광학현미경의 초정밀 능동 자동초점방법)

  • 이호재;이상윤;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 1996
  • Optical microscopes integrated with CCD cameras are widely used for automatic inspection of precision circuit patterns fabricated on glass masks and silicon wafers. For this application it is important to position the object always is focus so that the image appears in good quality while the microscope scans the object. However, as the magnification of the microscope is taken large for fine resolution the depth of focus becomes small, often in submicron ranges, requiring special care in focusing. This study proposes a new auto-focusing method, which can be readily incorporated in existing optical configuration of microscope. This method is based on optical triangulation using a separate beam of laser and two photodiodes, eliminating focus errors caused by surface roughness and waviness. Experimental results prove that the method can produce focus error signals which are very sensitive with a resolution of 5 nm within 0.5 ${\mu}{\textrm}{m}$ accuracy.

  • PDF

The Shape Optimization of washing Machine Shaft for High-Speed Rotation through Analysis of Static and Dynamic Characteristics (정특성 및 동특성 해석을 통한 고속세탁기 주축의 형상 최적화)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.132-139
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Also, Vibration occurs due to the frequency of the rotating parts. But, shaft has various design factors such as diameter and distance between bearings according to configuration of shaft, the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using center composition method among response surface derived from regression equation of simulation-based DOE.