• 제목/요약/키워드: Confidence-Flow

검색결과 204건 처리시간 0.025초

음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향 (Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers)

  • 최용문;박경암;차지선;최해만;윤복현
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.

3축 HOT-FILM 풍속계에 의한 연장된 앞전을 갖는 삼각날개 속도장의 측정 (Velocity Field Measurements Over A Lex/Delta Wing By Triple Axis Hot-Film Anemometry)

  • 이기영;손명환;장영일
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.1-8
    • /
    • 2003
  • 연장된 앞전을 갖는 삼각날개 위에서 시위방향의 여러 위치에서 3축 hot 필름 풍속계를 사용하여 속도장 데이터를 획득하였다. 속도장 데이터는 받음각 24도와 32도에 대하여 중심 시위선을 기준으로 한 레이놀즈수 $1.76{\times}10^6$에서 날개면에 수직한 유동단면에서 측정하였다. 3축 hot 필름 프로브에 의한 세 가지 속도 성분을 측정함으로써 연장된 앞전을 갖는 삼각날개에서의 와류장을 정량적으로 분석할 수 있었다. 날개 와류와 LEX 와류는 평균 축방향 속도가 국소 최고 속도를 갖는 영역에 존재하였다. 아울러, 앞전 근처의 날개면 위에서 주와류와 반대 방향으로 회전하는 이차와류의 생성을 관찰할 수 있었다. 측정 프로브의 유동장에의 삽입은 와류 중심 위치에 크게 영향을 주지 않음을 알 수 있었다.

가스 모니터 및 볼륨 제어 방식의 마취기용 인공 호흡기 개발 (Development of an Anaesthesia Ventilator by Volume Control Method and a Gas Monitoring System)

  • 이종수;성종훈;김영길
    • 전자공학회논문지SC
    • /
    • 제37권4호
    • /
    • pp.42-48
    • /
    • 2000
  • 일반적으로 시술자가 환자에게 마취를 할 때에는 매우 주의하여야 한다. 만약 잘못 시행 될 때는 환자는 매우 위험한 상황에 빠지게 된다. 본 논문에서는 잘못 시술이 발생 될 수 있는 몇몇 위험요소들을 사전에 예방하기 위하여 시스템의 정밀성과 사용자의 편리성을 고려하여 구현하는 것을 목표로 하였다. 특히 시스템에서 전자적인 부분은 스위치와 엔코더를 이용하여 사용자 인터페이스에서 조작을 편리하게 하고, 그래픽 액정화면 표시기를 이용하여 환자의 기도압과 이산화탄소 파형을 실시간 모니터링 기능을 구현하였다. 또한 설정값의 정밀한 제어를 위해 기계적인 부분에서 유량 제어 밸브와 유량 센서를 이용하여 피드백 유량 제어 시스템을 구현하였다. 이러한 기술을 개발함으로써 시술자에게 설정치 조작의 편리성과 정확성을 가져다줄 뿐만 아니라 환자의 상태와 여러 가지 변수들의 허용 범위를 넘을 경우 정확하고 신속하게 정보를 알려줌으로서 마취기용 인공 호흡기의 안정성과 신뢰성이 확보될 수 있음을 알 수 있었다.

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant

  • Peng, Min-jun;Wang, Hang;Chen, Shan-shan;Xia, Geng-lei;Liu, Yong-kuo;Yang, Xu;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.396-410
    • /
    • 2018
  • To assist operators to properly assess the current situation of the plant, accurate fault diagnosis methodology should be available and used. A reliable fault diagnosis method is beneficial for the safety of nuclear power plants. The major idea proposed in this work is integrating the merits of different fault diagnosis methodologies to offset their obvious disadvantages and enhance the accuracy and credibility of on-line fault diagnosis. This methodology uses the principle component analysis-based model and multi-flow model to diagnose fault type. To ensure the accuracy of results from the multi-flow model, a mechanical simulation model is implemented to do the quantitative calculation. More significantly, mechanism simulation is implemented to provide training data with fault signatures. Furthermore, one of the distance formulas in similarity measurement-Mahalanobis distance-is applied for on-line failure degree evaluation. The performance of this methodology was evaluated by applying it to the reactor coolant system of a pressurized water reactor. The results of simulation analysis show the effectiveness and accuracy of this methodology, leading to better confidence of it being integrated as a part of the computerized operator support system to assist operators in decision-making.

Differences in Treatment Outcomes According to the Insertion Method Used in Extracorporeal Cardiopulmonary Resuscitation: A Single-Center Experience

  • Han Sol Lee;Chul Ho Lee;Jae Seok Jang;Jun Woo Cho;Yun-Ho Jeon
    • Journal of Chest Surgery
    • /
    • 제57권3호
    • /
    • pp.281-288
    • /
    • 2024
  • Background: Venoarterial extracorporeal membrane oxygenation (ECMO) is a key treatment method used with patients in cardiac arrest who do not respond to medical treatment. A critical step in initiating therapy is the insertion of ECMO cannulas. Peripheral ECMO cannulation methods have been preferred for extracorporeal cardiopulmonary resuscitation (ECPR). Methods: Patients who underwent ECPR at Daegu Catholic University Medical Center between January 2017 and May 2023 were included in this study. We analyzed the impact of 2 different peripheral cannulation strategies (surgical cutdown vs. percutaneous cannulation) on various factors, including survival rate. Results: Among the 99 patients included in this study, 66 underwent surgical cutdown, and 33 underwent percutaneous insertion. The survival to discharge rates were 36.4% for the surgical cutdown group and 30.3% for the percutaneous group (p=0.708). The ECMO insertion times were 21.3 minutes for the surgical cutdown group and 10.3 minutes for the percutaneous group (p<0.001). The factors associated with overall mortality included a shorter low-flow time (hazard ratio [HR], 1.045; 95% confidence interval [CI], 1.019-1.071; p=0.001) and whether return of spontaneous circulation was achieved (HR, 0.317; 95% CI, 0.127-0.787; p=0.013). Low-flow time was defined as the time from the start of cardiopulmonary resuscitation to the completion of ECMO cannula insertion. Conclusion: No statistically significant difference in in-hospital mortality was observed between the surgical and percutaneous groups. However, regardless of the chosen cannulation strategy, reducing ECMO cannulation time was beneficial, as a shorter low-flow time was associated with significant benefits in terms of survival.

Diagnostic Performance of On-Site Automatic Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve

  • Doyeon Hwang;Sang-Hyeon Park;Chang-Wook Nam;Joon-Hyung Doh;Hyun Kuk Kim;Yongcheol Kim;Eun Ju Chun;Bon-Kwon Koo
    • Korean Circulation Journal
    • /
    • 제54권7호
    • /
    • pp.382-394
    • /
    • 2024
  • Background and Objectives: Fractional flow reserve (FFR) is an invasive standard method to identify ischemia-causing coronary artery disease (CAD). With the advancement of technology, FFR can be noninvasively computed from coronary computed tomography angiography (CCTA). Recently, a novel simpler method has been developed to calculate onsite CCTA-derived FFR (CT-FFR) with a commercially available workstation. Methods: A total of 319 CAD patients who underwent CCTA, invasive coronary angiography, and FFR measurement were included. The primary outcome was the accuracy of CT-FFR for defining myocardial ischemia evaluated with an invasive FFR as a reference. The presence of ischemia was defined as FFR ≤0.80. Anatomical obstructive stenosis was defined as diameter stenosis on CCTA ≥50%, and the diagnostic performance of CT-FFR and CCTA stenosis for ischemia was compared. Results: Among participants (mean age 64.7±9.4 years, male 77.7%), mean FFR was 0.82±0.10, and 126 (39.5%) patients had an invasive FFR value of ≤0.80. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of CT-FFR were 80.6% (95% confidence interval [CI], 80.5-80.7%), 88.1% (95% CI, 82.4-93.7%), 75.6% (95% CI, 69.6-81.7%), 70.3% (95% CI, 63.1-77.4%), and 90.7% (95% CI, 86.2-95.2%), respectively. CT-FFR had higher diagnostic accuracy (80.6% vs. 59.1%, p<0.001) and discriminant ability (area under the curve from receiver operating characteristic curve 0.86 vs. 0.64, p<0.001), compared with anatomical obstructive stenosis on CCTA. Conclusions: This novel CT-FFR obtained from an on-site workstation demonstrated clinically acceptable diagnostic performance and provided better diagnostic accuracy and discriminant ability for identifying hemodynamically significant lesions than CCTA alone.

진해 용원수로의 COD 및 영양염류 농도 추세분석 (Trend Analysis of the COD and Nutrients Concentrations in the Yongwon Channel, Chinhae)

  • 조홍연;채장원;박정규;구명서
    • 한국해안·해양공학회논문집
    • /
    • 제20권4호
    • /
    • pp.421-428
    • /
    • 2008
  • 부산 신항 개발사업으로 형성된 용원수로는 좁고 긴 형태로 해수흐름이 정체되어 환경악화가 우려되는 지역이다. 본 연구에서는 2003년부터 2007년까지의 월별 관측 자료를 이용하여 용원수로의 수질변화 양상을 분석하였다. 추정된 연평균 농도와 오차범위를 분석한 결과 용원수로 내부가 용원수로 입구에 비하여 전반적으로 뚜렷하게 수질이 악화되어 있는 것으로 파악되었다. 수로 입구의 수질농도를 기준으로 수로 내부의 수질농도는 COD, TN, TP 항목의 경우 각각 1.34배, 2.08배, 1.80배로 높은 것으로 파악되었다. 한편, Mann-Kendall 방법을 이용한 오염물질 농도변화의 추세검정 결과, 일반적으로 사용되는 95% 신뢰수준에서 추세를 가지는 경우는 SW-26 지점 TP 항목(증가추세)을 제외하고는 모두 뚜렷한 변화 추세는 없는(엄밀한 통계적인 용어로는 "있지 않은") 것으로 파악되었다.

LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정(II) (Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments(II))

  • 맹승진;이순혁
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.33-44
    • /
    • 2003
  • This study was conducted to estimate the design flood by the determination of best fitting order for LH-moments of the annual maximum series at fifteen watersheds. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized Extreme Value (GEV) in the first report of this project. Parameters of GEV distribution and flood flows of return period n years were derived by the methods of L, L1, L2, L3 and L4-moments. Frequency analysis of flood flow data generated by Monte Carlo simulation was performed by the methods of L, L1, L2, L3 and L4-moments using GEV distribution. Relative Root Mean Square Error. (RRMSE), Relative Bias (RBIAS) and Relative Efficiency (RE.) using methods of L, Ll , L2, L3 and L4-moments for GEV distribution were computed and compared with those resulting from Monte Carlo simulation. At almost all of the watersheds, the more the order of LH-moments and the return periods increased, the more RE became, while the less RRMSE and RBIAS became. The Absolute Relative Reduction (ARR) for the design flood was computed. The more the order of LH-moments increased, the less ARR of all applied watershed became It was confirmed that confidence efficiency of estimated design flood was increased as the order of LH-moments increased. Consequently, design floods for the appled watersheds were derived by the methods of L3 and L4-moments among LH-moments in view of high confidence efficiency.

커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구 (A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance)

  • 문성준;정수진;이상인;김태훈
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.