• Title/Summary/Keyword: Confidence-Flow

Search Result 204, Processing Time 0.025 seconds

A study on the Computer-Aided Design of steam ejector (증기 이젝터의 자동설계를 위한 전산프로그램의 개발)

  • 김경근;김용모;강신돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1987
  • Steam ejector is a equipment which compresses the gases to desired discharge pressure. It is widely used for the evacuation systems because of its high working confidence. And recently it is used as the thermo-compressors in the various energy saving systems. Steam ejector is constructed of three basic parts; a suction chamber, a motive nozzle and a diffuser. The high velocity stream jet of steam emitted by the motive nozzle creats suction chamber, which draws the low pressure gases. The diffuser converts the kinetic energy of high velocity flow to pressure energy. It is not easy to determine the dimensions of a steam ejector met to the desired design condition, because that the expected suction rates must be obtained by reapeating the complicate calculation. And also such a calculation is concomitant with geometrical analysis for suction part and diffuser based on the stability of steam flow. Therefore, it is considered that the Computer-Aided Design (CAD) of steam ejector is a powerful design method. In this paper, computer program for steam ejector design is developed based on the theoretical research and the previous experimental results. And the determinating method of diffuser inlet angle and the velocity development profile of suction gas along to the diffuser are suggested. The validity of the development profile of suction gas along to the diffuser are suggested. The validity of the developed computer results with other's for the practical design calculation of a manufactured steam ejector.

  • PDF

Determination of Event Mean Concentrations and Pollutant Loadings in Highway Storm Runoff (고속도로 강우 유출수내 오염물질의 EMC 및 부하량 원단위 산정)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.631-640
    • /
    • 2004
  • This research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants. Eight highway sites in Southern California area were monitored for three years with collecting of grab and flow-weighted composite samples, rainfall and runoff flow. Generally the EMCs cannot be determined by simple statistical averaging of measured pollutant concentrations because of random characteristics of runoff quality and quantity. Therefore, this manuscripts will show a new EMC determination method. The EMC ranges of 95% confidence intervals are 102.78-216.37mg/L for TSS, 104.53-251.79mg/L for COD, 5.42-10.58mg/L for oil & grease and 2.42-10.18mg/L for TKN. The ranges of washed-off mass loading are determined to $0.06g/m^2-17.27g/m^2$ for TSS and $0.1-3.23g/m^2$for COD.

Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar (반구형 부스바를 이용한 전해연마액 수명연장을 위한 공정 최적화)

  • Kim, Soo Han;Lee, Seung Heon;Cho, Jaehoon;Lim, Dong-Ha;Choi, Joongso;Park, Chulhwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.447-453
    • /
    • 2016
  • In this study, we intended to extend the life of electropolishing solution through the reduction of electric resistance by improving the electrolysis efficiency. The optimum conditions were obtained by half round bus bar and Taguchi method. As the main control factors in the electropolishing process, current density, polishing time, electrolyte temperature and flow rate were selected. The electrolyte temperature was the most significant to the electrolysis efficiency. The optimum conditions for the life extension of electropolishing solution were as follows: current density, $45A/dm^2$; polishing time, 6 min; electrolyte temperature, $70^{\circ}C$; flow rate, 11 L/min. As a results of ANOVA of SN ratios, it was found that the electrolyte temperature was significant factor at the 90% confidence level.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

ESTABLISHMENT OF CONSTRUCTION INDUSTRY CREDIT GUARANTEE SYSTEM-BASED ON TAIWAN'S CONSTRUCTION INDUSTRY

  • Ting-Ya Hsieh;Tsung-Shi Liu
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.399-406
    • /
    • 2011
  • Various construction bonds and warranties critically burden the general contractor. Also, sporadic or cumulative delays of progress payment by the owner can further trap the contractor in a financial quagmire. Facing the possibility of cash flow deficiency and callous response from the banks, most construction firms may become financially incapable of market competition, and attractive project tenders become a bidding game among few deep-pocket players. The downside of such market environment is that the depth of pocket, rather than that of professional competency dictates the choice of market winners. In Taiwan, this has been a potential crisis to the construction industry after the financial crisis which started out since 2008. To encounter this problem, this research will examine the means to better manage the construction industry. Essentially, a credit guarantee system (CGS) is the prime solution to strengthen a bank's confidence in any particular construction firm. Thus establishing a national platform which evaluates and rewards a construction firm's overall credibility is pivotal, and this third-party rated credit can help a bank to render a loan more wisely. Finally, this paper will propose the ideal operating schemes of construction-specific CGS in Taiwan and a credit scoring prototype model for construction industry, as reference for the government and banks, respectively.

  • PDF

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

Development and Accuracy Analysis of the Discharge-Supply System to Generate Hydrographs for Unsteady Flow in the Open Channel (개수로에서의 부정류 수문곡선 재현을 위한 유량공급장치의 개발 및 정확도 분석)

  • Kim, Seo-Jun;Kim, Sang-Hyuk;Yoon, Byung-Man;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.783-794
    • /
    • 2012
  • The analysis for unsteady flow is necessary to design the hydraulic structures affected by water level and discharge changes through time. The numerical model has been generally used for unsteady flow analysis, however it is difficult to acquire field data to calibrate and validate the numerical model. Even though it is possible to collect field data for some case, high cost and labor are required and sometimes it is considered that the confidence of measured data is very low. In this case, the experimental data for unsteady flow can be used to calibrate and validate the numerical model as an alternative. Therefore, the discharge-supply system which could generate various type of unsteady flow hydrograph was developed in this study. Also, the accuracy of the unsteady flow hydrograph generated by developed dischargesupply system in the experiment was evaluated by comparing with target hydrograph. Accuracy errors and Root Mean Square Error (RMSE) were analyzed for the rectangular-type hydrograph with sudden changes of flow, triangular-type hydrograph with short peak time, and bell-type flood hydrograph. As a result, the generating error of the discharge-supply system for the rectangular-type hydrograph was about 59% which was maximum error among various types. Also, it was represented that RMSE for the triangular-type hydrographs with single and double peaks were approximately corresponding to 10%. However, RMSE for the bell-type flood hydrograph was lower than 2%.

Feasibility Analysis of HEC-RAS for Unsteady Flow Simulation in the Stream Channel with a Side-Weir Detention Basin (강변저류지가 있는 하도에서의 부정류 흐름 모의를 위한 HEC-RAS의 적용성 검토)

  • Kim, Seo-Jun;Hong, Sang-Jin;Yoon, Byung-Man;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.495-503
    • /
    • 2012
  • It is necessary to perform the precise analysis of unsteady flow for effective design of the side-weir detention basin installed in the river. Generally, the HEC-RAS program, which is a 1D unsteady numerical model, is mostly used to simulate the unsteady flow for rivers. However, it is difficult to have confidence of unsteady flow results simulated by HEC-RAS due to the lack of experimental data and field monitoring data for the channel with a side-weir detention basin. Therefore, the purpose of this study is to validate or verify the simulation results calculated by HEC-RAS through the experiments for the open channel with a side-weir detention basin using specially-designed unsteady discharge-supply system. The experimental cases included unsteady flows in the straight channel with and without a side-weir detention basin. Especially, for the case with a detention basin, the experiment was performed to consider only the free flow condition over the side-weir. The study results showed that values of water level and discharge obtained from HEC-RAS coincided reasonably with experimental results with the maximum error of 3% for water level and 1% for discharge in the case of the flow without the side-weir detention basin and 4% for water level and 2% for discharge with the side-weir detention basin.

Fundamental Experiment on the Flow Characteristics inside the Exhaust Duct of Cone Calorimeter (콘 칼로리미터의 배기 덕트 내부 유동 특성 기초 실험)

  • Shin, Yeon Je;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2019
  • In this study, the mass flow rate of the heat release rate equation, which is the major factor of the oxygen consumption method, was analyzed for the fundamental investigation of the cone-calorimeter (5 m length and 0.3 m diameter). The shapes of a completely empty inside, 3 mm pore diameter mesh and pore diameter 10 mm honeycomb with 0.76 porosity were constructed using the cone-calorimeter. To calculate the mass flow rate, four bi-directional probes and thermocouples were installed in a uniform position in the vertical direction of flow. The velocity gradient and flow perturbation were measured from the increase in Reynolds number. As the flow capacity increased, the speed gradient increased in all three shapes relative to the turbulence intensity. In addition, the deviation of extended uncertainty to the mass flow was completely low in the order of empty space, mesh (dp = 3 mm) and honeycomb (dp = 10 mm and 𝜖 = 0.76) at the 95% confidence level. The results can be used in designs to improve the flow stability of the cone calorimeter.

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.