• Title/Summary/Keyword: Cone-jet mode

Search Result 19, Processing Time 0.026 seconds

Characteristics of the electrospraying combustion using grooved nozzle (홈노즐을 이용한 정전분무 확산 연소 특성에 관한 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2366-2371
    • /
    • 2007
  • Spray combustion characteristics of a conducting fuel electrospray have been studied for clean combustion technology. The multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. Charged micro droplets can be obtained in almost uniform size during operating the electrospray in the cone-jet mode. This experiment device set up the multiplexed grooved nozzle system with the extractor. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. This electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray. In case of the single grooved nozzle electrospray, the diffusion flames are occurred at each jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion.

  • PDF

Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray (고유량 정전분무를 위한 다중 홈노즐 특성 연구)

  • Kim, Kyoung-Tae;Kim, Woo-Jin;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.848-854
    • /
    • 2007
  • The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at low flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per $cm^2$ at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

Mode Change from Cone-jet to Dripping in Electrospraying (전기분무 콘제트-드리핑 모드 변환)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2971-2976
    • /
    • 2007
  • The mode change from Taylor cone-jet to dripping in electrospraying has been analytically investigated. The change has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Electrohydrodynamic Characteristics of an Electro-Spray System (전기 분무 시스템의 전기수력학적 특성)

  • Lee, Jae-Bok;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1031-1039
    • /
    • 1999
  • Electrospraying comprises the generation of liquid droplets by applying a high voltage to the surface of a liquid. By monitoring the current and the flow rate it was possible to obtain a stable cone jet mode in a given condition. In this work the liquid contained NaCl particles resolved in distilled water. The NaCl particles increased concentration of the ionized solution and thus increased electrical conductivity of the liquid, which was inversely proportional to the flow rate in the cone jet mode. A number of sprayed droplets were sampled and dried enough, and then the size of NaCl particles were measured. The measured droplet diameter was a little larger than two theoretical diameters, Rayleigh diameter and mobility diameter.

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

Experimental study on CIS thin film deposition via electrostatic spray technique (정전기 스프레이 기술을 이용한 CIS 박막코팅에 관한 실험적 연구)

  • Yoon, Hyun;Yoon, Sukgoo;Kim, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Electrostatic spray deposition is an innovative coating technique that produces fine, uniform, self-dispersive (due to the Coulombic repulsion), and highly wettable, atomized drops. Copper-indium salts are dissolved in an alcohol-based solvent, which is then electrostatically sprayed onto a moderately heated, molybdenum-coated substrate. Solvent flowrates range from 0.02 to 5 ml/hr under applied voltages of 1 to 20 kV yielding drop sizes around a few hundred nanometers. By comparing the scanning electron miscrscope images of coated samples, the substrate temperature, applied voltage, solvent flowrate, and nozzle-substrate distance are demonstrated to be the primary parameters controlling coating quality. Also, the most stable electrostatic spray mode that reliably produces uniform and fine drops is the cone-jet mode with a Taylor cone issuing from the nozzle.

  • PDF

Characteristics of the Electrospraying Combustion Using Grooved Nozzle (홈노즐을 이용한 정전분무 확산 연소 시스템 개발 및 특성 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.979-985
    • /
    • 2007
  • Spray combustion characteristics of the conducting fuel electrospray has been studied for clean combustion technology. The electrospraying multiplexed system which can maintain the characteristics of the cone-jet mode is able to obtain charged micro droplets with high flow rate. In addition, they have monodisperse distribution during operating the electrospray in the cone-jet mode. The multiplexed grooved nozzle system with the extractor was applied to this experimental device set up. The stable grooved mode can be generated by the grooved nozzle and this electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray, In case of the single grooved nozzle electrospray the diffusion flames are occurred at each Jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion

Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing (핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향)

  • Lee Dae-Young;Yu Jae-Hun;Yu Tae-U;Hwang Jungho;Kim Yong-Jun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Experimental Study of Droplet Characteristics Related to Electrospray Mode (정전분무모드에 관한 액적특성의 실험적 연구)

  • Kim, Ji Yeop;Lee, Doe Hyun;Cho, Ju Hyung;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.26-35
    • /
    • 2022
  • Electrospray is a method of atomizing fluid using high voltage supply and capable of generating continuous flow and coherent size of droplets. Electrical system and properties of fluids has enabled electrospray to have various spray modes. However, its studies have been confined only in Cone jet, which is more stable and easier to manipulate droplets' size than other spraying modes. Therefore, it is necessary to investigate and compare other spraying modes based on experimental parameters and physical properties of fluids. This research paper identified nine different spray modes. It was found out that Sauter Mean Diameter (SMD) is proportional to flow rate of fluids and maximum difference among spray modes was 1.7 times. On the other hand, SMD standard deviation had low variations on specific flow rates of fluids. Pulsed jet mode recorded the largest SMD standard deviation, while Spindle recorded the lowest.