• Title/Summary/Keyword: Cone penetrometer

Search Result 97, Processing Time 0.024 seconds

Development of Travelling Cone-Penetrometer (주행형(走行型) Cone-Penetrometer 개발(開發)에 관(關)한 연구(硏究))

  • Lee, K.M.;Song, J.G.;Chang, D.C.;Chung, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 1987
  • The objective of this study is to develop a soil hardness tester which can estimate tillage resistance with tae travelling cone-penetrometer. For the study, a series of tests was performed using the cone penetrating in the horizontal direction. Based on the tests above, soil hardness was represented by travelling cone-index vs depth of cone penetration, travelling speed and moisture contents of the soil Resistance characteristics obtained from the experiments were compared with those by a vertical cone-penetrometer and the Yamanaka's soil hardness tester. Following conclusions were made from the study. 1. 8 to 9 peaks per one meter were detected in the resistance curve of cone penetration regardless of the travelling speed of cone-penetrometer when it penetrated the soil in the horizontal direction. This phenomenon seemed to be a similar one noticed in shearing pitch of plowing. 2. Cone index increased as travelling speed increased from 0.08m/sec to 0.5m/sec. 3. Linear relationship was found between the cone indices measured by the travelling coe-penetrometer and Yamanaka's hardness tester. 4. Increasing rate of the cone indices measured by vertical cone-penetrometer decreased as the depth of soil increased while the cone indices by the travelling cone-pentrometer increased linearly.

  • PDF

Geo-Environmental Site Investigation for Underground Oil Storage facilities and Landfill Using the Envi-Cone Penetrometer System (환경콘 관입시스템을 이용한 유류저장소 및 폐기물매립지 지중환경특성 조사)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.33-36
    • /
    • 2000
  • The purpose of this study investigated underground oil storage(USTs) and Landfill using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground.

  • PDF

A Study on the Development of Envi-Cone Penetrometer System (지반환경조사용 환경콘 관입시스템 개발을 위한 기초연구)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.247-254
    • /
    • 1999
  • In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation of contaminant in the ground. There are many techniques such as geophysical, drilling, sampling, and pushing techniques for investigation of contaminated ground. The most rapidly developing site characterization techniques for geoenvironmental purposes Involve direct push technology, that is, penetration tests. In this study, the envi-cone penetrometer system is developed by modification of traditional cone penetration test. The electrical resistivity sensor, pH sensor, thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective.

  • PDF

Investigation of Ground Environment Around Underground Oil Storage Facilities Using the Envi-Cone Penetrometer System (환경콘에 의한 지하유류 저장시설주변 지반환경 조사)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.273-280
    • /
    • 2000
  • In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation of contaminant in the ground. There are many techniques such as geophysical, drilling, sampling, md pushing techniques for investigation of contaminated ground. The most rapidly developing site characterization techniques for geoenvironmental purposes involve direct push technology, that is, penetration tests. The purpose of this study investigated underground oil storage tanks(USTs) using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground surrounding the underground oil storage tanks.

  • PDF

A Study on the Developement of Korean Driving Cone Penetrometer Test(DCPT) Method (한국형타격콘관입시험법의 개발에 관한 연구)

  • Jung, Sung-Min;Kwon, Oh-Sung;Lee, Jong-Sung;Lee, Min-Hee;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.17-30
    • /
    • 2011
  • A variety of in-situ geotechnical investigation methods are currently used to measure the properties of each site, but in-situ tests for "Intermediate Geomaterial (IGM)", which is the transitional geomaterial between soil and rock, have only limited application. In the United States, "The Texas Cone Penetrometer Test (TCPT)", which is the geotechnical investigation technology for IGM, is utilized to create foundation designs. This paper introduces "The Driving Cone Penetrometer Test (DCPT)", which can be performed using general geotechnical investigation equipment and also analyzes the correlation between various in-situ geotechnical investigation methods by applying DCPT on the ground. The results showed that the correlation between the driving cone penetrometer test (DCPT) and standard penetration test (SPT) was quite high. Additionally, the scope of DCPT properties was wide, depending on soil types.

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

A Study of Relation Between Yamanaka Hardness and Penetrometer Cone Index (토양 경도 측정방법간 비교연구)

  • Han, Kyung-Hwa;Cho, Hee-Rae;Jeon, Sang-Ho;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.344-346
    • /
    • 2011
  • This study was conducted in order to compare between Yamanaka hardness (YA), hand-push type, and penetrometer cone index (PE), on 16 upland sites. Yamanaka hardness had significant correlation with penetrometer cone index. The regression equation was $PE=1.80^*YA+0.16$ ($R^2=0.91^{***}$, N=16) with the applicative YA range of 0.1-1.3 MPa.

Development of FBG Micro Cone Penetrometer for Layered Soil Detection (다층지반 탐지를 위한 광섬유 마이크로콘의 개발)

  • Kim, Rae-Hyun;Lee, Woo-Jin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.341-348
    • /
    • 2009
  • Various types of micro cone penetrometers have been developed by using strain gages for the layered soil detection. Strain gages, however, are affected by several factors such as temperature, self heating and lead wire length. In this study, micro cone penetrometers with 3~7mm in diameter, are developed by using FBG sensor to overcome the defects of the strain gage, and compensate the effect of temperature during penetration. In order to verifiy the accuracy and reliability of the developed FBG cone, the cone penetration test is performed on the layered soil. The tip resistance of FBG snesor shows excellent sensitivity, and can detect the interface of the layered soils with higher resolution. In addition, the 3mm micro cone penetrometer which is impossible cone diameter by using strain gages presents much higher sensitivity than the 7mm cone penetrometer. This study suggests that FBG sensor is a useful sensor for manufaturing the ultra small sized cone, and effectively detects the interface of the layered soil.

  • PDF

Design of IGM Socketed Drilled Shafts Using Texas Cone Penetrometer Tests (텍사스 콘 관입시험을 이용한 IGM에 근입된 현장타설말뚝의 설계)

  • Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.55-67
    • /
    • 2006
  • Modern methods for designing IGM(Intermediate Geomaterial) socketed drilled shafts require knowledge of the compressive strength and modulus of the IGM. However, the weathered IGMs at many sites prohibit the recovery of samples of sufficient length and integrity to test cores in either unconfined or triaxial compression tests. Since rational design procedures usually require values of compressive strength, surrogate methods must be employed to estimate the compressive strength of the IGM. A surrogate method considered in this study was Texas cone penetrometer tests which were performed at several sites in North Central Texas. Correlations of Texas cone penetrometer tests and compressive strengths of cores from these formations are provided in the paper. In order to develop the relationships between Texas cone penetrations and side and base resistance of IGM socketed drilled shafts, three filed load tests were conducted in the same sites. Based on the field study and literature reviews, a design method for IGM socketed drilled shafts using Texas cone penetration test was proposed.

The Ground Investigation Technique of Railway Using Pagani Cone Test (Pagani Cone Test를 이용한 철도노반 조사 기법 연구)

  • Cho, Eun-Kyung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.792-801
    • /
    • 2016
  • Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are widely used in geotechnical investigation methods for railway roadbed. However, SPT can not be used on the Railway track, since the equipment may contact to the electric lines. However, a portable equipment can be used for geotechnical investigation without electrical hazard. Dynamic Cone Penetrometer (DCP) is one of representative portable equipments. A normal portable DCP has usually not enough driving energy and the rigidity of cone-rod, so it is impossible to investigate the required investigate penetration depth. In this study, The adaptability of Pagani cone test which is one of portable dynamic cone penetrometer is studied and compared with SPT-N data. As a result of this study, the proposed correlation factors between Pagani cone test and SPT-N values after corrections is 1.48 for sandy soil and 1.33 for clayey soil.