• Title/Summary/Keyword: Cone index map

Search Result 4, Processing Time 0.018 seconds

Mapping of Cone Index for Precision Tillage (정밀 경운을 위한 원추지수 지도 작성)

  • Chong B. H.;Park Y. J.;Park H. K.;Park S. B.;Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.127-133
    • /
    • 2005
  • Precision tillage is designed to till lands variably according to their firmness. Therefore, it is necessary to measure soil firmness in fields and present it in a form with which the variable tillage on be performed. Such forms may be classified into two categories: sensor-based and map-based forms. The map-based approach appears to be inevitable until the technology develops high enough to secure the sensor-based approaches. The first step for map-based precision tillage may be to develop a tillage recommendation map. In this study, a tractor-mountable automatic soil firmness measurement system was developed to construct a cone index map. The system is comprised of three ASAE Standard cone penetrometers and a hydraulic unit for controlling operation of the penetrometers. The system is designed to conduct stop-and-go measurements in fields. The measurements from the three penetrometers are transferred to a microcomputer and the average cone index was calculated. This average cone index was taken as soil firmness of the location where the measurement was made. The cone indices thus determined were used to construct a cone index map using the ArcView software. The system also displays the soil penetration resistance, cone index and soil depth as the cone penetrates into the soil. The field performance of the system was evaluated and the cone index maps at different depths were also presented.

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.

A Study for the Optimum Joint Set Orientations and Its Application to Slope Analysis (사면해석을 위한 최적의 절리군 대표방향성 도출 및 활용기법 연구)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.343-357
    • /
    • 2018
  • Algorithm which can analyze the slope failure behavior utilizing the comprehensive information of the dense point of joint poles and the joint set orientations, both of which are obtained statistically, and the defect pattern of pole distribution has been developed. This method overcomes the potential incorrectness of the hemispheric projection method utilizing the joint set orientations only and also enhances the reliability of slope failure analysis. To this end a method capable of calculating the joint dispersion index directly from the joint pole distribution, instead of contour map, has been devised. The representative orientations for the slope failure analysis has been determined by considering the number and orientations of cone angle-dependent joint sets as well as the joint dispersion index. By engaging these representative orientations to the hemispheric projection analysis more reliable slope failure examination has been carried out. Sensitivity analysis for the potentially unstable slope of plane failure mode has been performed. Significance of joint strength index and the external seismic loading on the slope stability has been fully analyzed.

Comparison of Liquefactive Hazard Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 재해도 비교)

  • Song, Seong-wan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.5-15
    • /
    • 2022
  • Due to the Pohang earthquakes in 2017, concerns are increasing that Korea is no longer safe from liquefaction, and needs the research to take proper measures for liquefaction. Liquefaction is defined as the loss of shear strength of the ground. In order to solve this problem, many studies, such as composing a liquefaction hazard map using Liquefaction Potential Index (LPI), have been conducted. However, domestic researches on the comparative analysis of liquefaction prediction results are not sufficient. Therefore, in this study, liquefaction hazard maps were composed using the standard penetration test results, shear wave velocity values, and cone penetration test results. After that, the precision was determined by comparing the calculated LPI using the geotechnical information and predicted LPI via spatial interpolation target. Based on the analysis results, the predicted LPI value using geotechnical information is more precise than using calculated LPI value.