• 제목/요약/키워드: Cone Angle

검색결과 375건 처리시간 0.023초

커버 형상을 고려한 고속전철 팬터그래프 공력특성의 수치해석적 연구 (INVESTIGATION FOR THE AERODYNAMIC CHARACTERISTICS OF HIGH SPEED TRAIN PANTOGRAPH WITH COVER)

  • 강형민;김철완;조태환;김동하;윤수환;권혁빈
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.18-24
    • /
    • 2012
  • The aerodynamic performance of the pantograph on a high speed train was compared for different pantograph covers which are designed to block the aero-acoustic noise from the pantograph. For the study, two types of cover are designed: wedge and cone types. The lift force of pantograph with cover was compared with the force of pantograph only. The comparison clarified that the cone type cover increases the sideslip angle of the flow and decreases the lift force considerably. However, the wedge type cover changes the flow direction upward and increases the lift force of the pan head. This increment of lift force compensates the decrement of lift force caused by the blocking of the flow into the pantograph lower frame due to cover. Therefore, in case of the wedge type cover, the overall lift force changes slightly compared with the cone type cover.

회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구 (Vortex breakdown in an axisymmetric circular cylinder with rotating cones)

  • 김재원;엄정섭
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF

초음속풍동실험에서 원뿔형상의 표면에서 측정되는 압력에 대한 고찰 I (The consideration about pressure on surface of cone shape in experiments of supersonic wind tunnel I)

  • 이재호;최종호;윤현걸;김규홍
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.391-394
    • /
    • 2011
  • 이 논문은 전투기나 미사일 등의 전면부에서 음속이상의 속도로 날아갈 때 발생하는 충격파의 각도와 영향을 수치데이터와 비교한 논문이다. 서울대학교 초음속풍동을 이용하여 원뿔형 모델에 대해서 마하수를 다르게 하여 충격파의 위치와 크기를 측정하여 보았다. 마하수 2.0, 3.0, 그리고 3.8에 대해서 실험을 수행했다. 그 결과 충격파의 위치와 크기는 실험의 속도, 받음각, 사이드 슬립각에 따라서 다르고 때에 따라 blockage effect가 발생한다는 것을 확인했다.

  • PDF

디젤분무특성에 관한 실험적 연구(I) (Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I))

  • 박호준;장영준
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

충돌형 노즐의 분무특성에 관한 실험적 연구 (An Experimental Study on the Spray Characteristics of Deflector Nozzle)

  • 김경훈;최영하;윤석주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.291-294
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, discharge coefficient and bubble behaviors of spray and SMD at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase of injection pressure, development of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by surface tension forces, the bubble opens into hollow tulip shape, and the curved surface straightened to form a conical sheet like as the simplex swirl atomizer. Spray cone angle was nearly 90 deg. Variations of SMD were examined in order to describe the dependency of SMD on the injection pressure and orifice diameter. The shape of deflector and oriffice diameter had an effect on the discharge coefficient.

  • PDF

스월형 GDI 엔진의 연료분포특성 연구 (Fuel Distribution Characteristics in a Swirl Type GDI Engine)

  • 김기성;박상규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.49-59
    • /
    • 2002
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder GDI engine. The experimental engine is a swirl type GBI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angle and the Injector specifications, such as the spray cone angle and the offset an91e on the fuel distributions characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing flow fields in the combustion chamber.

  • PDF

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.

충돌형 노즐의 분무형상 연구 (External Spray Characteristics of Deflector Nozzle)

  • 김경훈;최영하;윤석주
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.29-35
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, breakup length and bubble behaviors of spray at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase injection pressure, deveopment of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by form a conical sheet like as the simplex swirl atomizer. As trying the analysis of the ratio of bubble length and width it was found that the ratios is comparable. Spray cone angle was nearly $90^{\circ}$.

  • PDF

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Reynolds Number Effects on the Non-Nulling Calibration of a Cone-Type Five-Hole Probe for Turbomachinery Applications

  • Lee, Sang-Woo;Jun, Sang-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1632-1648
    • /
    • 2005
  • The effects of Reynolds number on the non-nulling calibration of a typical cone-type five-hole probe have been investigated for the representative Reynolds numbers in turbomachinery. The pitch and yaw angles are changed from - 35 degrees to 35 degrees with an angle interval of 5 degrees at six probe Reynolds numbers in range between $6.60{\times}10^3\;and\;3.17{\times}10^4$. The result shows that not only each calibration coefficient itself but also its Reynolds number dependency is affected significantly by the pitch and yaw angles. The Reynolds-number effects on the pitch- and yaw-angle coefficients are noticeable when the absolute values of the pitch and yaw angles are smaller than 20 degrees. The static-pressure coefficient is sensitive to the Reynolds number nearly all over the pitch- and yaw-angle range. The Reynolds-number effect on the total-pressure coefficient is found remarkable when the absolute values of the pitch and yaw angles are larger than 20 degrees. Through a typical non-nulling reduction procedure, actual reduced values of the pitch and yaw angles, static and total pressures, and velocity magnitude at each Reynolds number are obtained by employing the calibration coefficients at the highest Reynolds number ($Re=3.17{\times}10^4$) as input reference calibration data. As a result, it is found that each reduced value has its own unique trend depending on the pitch and yaw angles. Its general tendency is related closely to the variation of the corresponding calibration coefficient with the Reynolds number. Among the reduced values, the reduced total pressure suffers the most considerable deviation from the measured one and its dependency upon the pitch and yaw angles is most noticeable. In this study, the root-mean-square data as well as the upper and lower bounds of the reduced values are reported as a function of the Reynolds number. These data would be very useful in the estimation of the Reynolds-number effects on the non-nulling calibration.