• Title/Summary/Keyword: Conductor shield

Search Result 33, Processing Time 0.029 seconds

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

A Electrical Characteristic Simulation and Test for the Steady and Transient State in the 22.9kV HTS Cable Distribution System. (22-9kV배전계통에 대한 초전도케이블의 정상 및 과도상태에 대한 전기적 특성 시험 및 시뮬레이션 결과 검토)

  • Lee, Geun-Joon;Hwnag, Si-Dol;Yang, Byeong-Mo;Lee, Hyun-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2316-2321
    • /
    • 2009
  • With rapid development of world economics, electricity demand in metropolitan area has been increased dramatically. HTS(High Temperature Superconducting) cable is one of most promising technology to solve the bottleneck of electric network. However, HTS cable is not considered as matured technology yet to power system planners because of its different characteristics with conventional metal conductors. This paper suggests the comparison results of HTS cable simulation and experiment on steady state operation, also give the simulation results on transient characteristics of HTS cable components. This results could devote not only to discuss the security of HTS cable operation, but also to design power system oriented HTS cable.

Improvement of the Partial Discharges Phenomenon according to change of Conductor and Shield ring on the 38kV VCB Bushing (38kV VCB 부싱의 도체 및 쉴드링 변경에 따른 부분방전현상 개선)

  • Cha, Young-Kwang;Park, Soo-Min;Kang, Moo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1204-1205
    • /
    • 2015
  • 본 연구는 38kV급 VCB의 외함에 체결된 부싱의 부분방전 발생 문제를 해결하기 위하여 부싱의 형상에 따른 부분방전 현상을 분석하였다. 부싱에 발생하는 부분방전의 패턴을 분석한 결과 도체나 외함 끝단 등 날카로운 부위에서 발생할 수 있는 코로나 방전 형태로 나타났다. 이를 해결하기 위해 도체와 쉴드링의 형상을 변수로 두고 실험을 진행하였으며 시작품 제작 전 비용과 시간을 최소화하기 위해 Maxwell 2D 프로그램으로 전계해석을 선진행한 뒤 설계에 반영하여 실험하였다. 실험 결과 쉴드링의 크기나 형상보다는 고전압부와의 거리가 부분방전의 크기에 더 큰 영향을 미친다는 것을 알 수 있었고, 도체의 두께를 변화시켰을 때의 부분방전 및 전계집중 변화폭이 가장 컸다.

  • PDF

A Study on the Lightning Surge Protection Methods on Transmission System and Substation (송전계통 및 변전소 뇌서지 보호방안 연구)

  • Kim Jae-Kwan;Jung Chae-Kyun;Lee Jong-Beom;Cho Han-Goo;Seo Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.279-285
    • /
    • 2005
  • The lightning causes the damage of power system equipments as well as large power failure. Therefore, the insulation design should be established not only to decrease the damage of the facilities itself but also to increase the reliability of electric power system. This paper describes the useful way applying underbuilt ground wire and guy wire in transmission tower that safely protect the substation equipments. One or more shield wires under the phase conductor will not intercept lightning stroke, but they may improve reduce lightning voltages almost as effectively as if they were above the phase conductors. And the guy wires will mitigate the tower surge response. These would not only reduce backflashover possibility but also minimize crest and duration of surges entering the substation. EMTP is used to analyze the efficiency of the proposed methods.

Characterization of Foreign Undergrounded Distribution Cables (외국 지중배전케이블의 특성분석)

  • 고정우;오우정;김종은;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.428-431
    • /
    • 1997
  • In order to compare with domestic underground distribution cables, the foreign cable which was manufactured in USA, 1982 and has been serviced in field for 13 years was characterized with several tests. Water trees, voids, and convolutions are not found in insulation. In hot oil test, insulation is very clean and there was no separation of insulation and conductor shield. The results of degree of crosslinking, FTIR, and DSC are also usual. Specially, the distribution of OIT is very good, which is different from that of domestic cables. The content of impurities is relatively small. This cables was manufactured with good state and no extraordinary degradation is found.

  • PDF

Study on Pressure drop characteristics in HTS cable core with two flow passages

  • Lee, Jun-Kyoung;Kim, Seok-Ho;Kim, Hae-Joon;Cho, Jeon-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.33-37
    • /
    • 2008
  • The main objective of this study is to identify the pressure drop characteristics of coolant flow passages of 154kV/1GVA High Temperature Superconducting (HTS) power cable, experimentally. The passages were consisted of two parts, the one is the circular path with spiral ribs in the core to cool the cable conductor layer and the other is annular path with spirally corrugated outer wall to cool the shield layer. Thus the experiments to acquire the pressure drop data were performed with two types of circular spiral tubes and eight types of the concentric annuli in various range of Reynolds number. The pressure drops in the core tubes and the annuli were much higher than those in the tubes with smooth surface. Therefore, modified correlations to present the experimental results in each flow passage were suggested.

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.

Measurement of Transfer Impedance on Shielded Multiconductor Telecommunication Cables using IEC 96-1 Line Injection Method (IEC 96-1 Line Injection Method를 이용한 다 도체 통신케이블 차폐층의 전달임피던스 측정)

  • 이현영;오호석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.377-383
    • /
    • 2003
  • As the high-speed data communications such as xDSL using the existing copper cable come into wide use, the electromagnetic coupling characteristics of telecommunication cables become more significant. In order to describe the screening performance of telecommunication cable, the transfer impedance of cable shield is required. This paper describes the transfer impedance for two types of telecommunication cables using the line injection method of IEC 96-1. Results are analyzed to show how the materials of cable shields, the positioning of the injection line and of the inner conductor of the CUT(Cable Under Test) affect the value of transfer impedance. We then propose the transfer impedance model of telecommunication cable based on the measurements.

Analysis of WPT Characteristics by Shielding Materials (차폐 재질에 따른 무선전력전송 특성 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.623-628
    • /
    • 2015
  • In this paper, the shield plate was applied to the wireless power transfer (WPT) system. Then we compared transmission efficiency of WPT system between transmitter and receiver coils. The superconductor coil was applied to transmitter and receiver coils in order to increase the transmission efficiency of WPT. The superconductor coil was more effective to power transmission as its current density was higher than normal conductor coil. Efficiency of WPT between transmitter and receiver coils was changed by a quality of shielding. We used the shielding materials such as glass, iron, steels, aluminum etc. The efficiency of WPT system was depended on the shielding materials of transmitter and receiver coils. As a result, magnetic material such as aluminum, iron reduced the magnetic flux density and the efficiency of WPT. remarkably, but in non-magnetic material such as glass and plastic, the efficiency of WPT was unaffected.

Effects of Sm:Ba:Cu Composition Ratio on the Superconducting Properties of SmBCO Coated Conductor Prepared by using a Composition Gradient Method (SmBCO 초전도 선재 특성에 대한 Sm:Ba:Cu 조성비의 영향)

  • Kim, H.S.;Oh, S.S.;Jang, S.H.;Min, C.H.;Ha, H.S.;Ha, D.W.;Ko, R.K.;Youm, D.J.;Moon, S.H.;Chung, K.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • The effects of Sm:Ba:Cu composition ratio in SmBCO coated conductor on their superconducting properties were investigated. The SmBCO coated conductors were fabricated by reactive co-evaporation method using EDDC(Evaporation using Drum in Dual Chamber) system. In this system, we could obtain various samples with different composition ratios in a batch by the technique providing composition gradient at deposition zone. From the specimens prepared by EDDC system, we found that composition ratio is uniform parallel to the drum axis, but gradient along the circumferential direction of the drum. We installed a shield having parallelogram open area between the deposition chamber and the evaporation chamber in EDDC system, and attached a 30 cm long template, which is parallel to drum axis, onto the drum surface. In this configuration, we could obtain SmBCO coated conductors having a gradient composition along the length of template. We measured the composition ratios and surface morphologies with periodic interval by SEM and EDAX, and confirmed the profile of composition ratio. We also measured critical current using non-contact Hall probe critical current measurement system and thereby could plot composition ratio vs. critical current. The maximum critical current was obtained, and the surface morphology with the shape of roof tile was observed at the corresponding composition ratio of Sm:Ba:Cu = 1.01:1.99:4.87. It was also found that composition ratio had an effect on not only critical current but also surface morphology.