• Title/Summary/Keyword: Conductive powder

Search Result 145, Processing Time 0.032 seconds

Nanoscale Metal Powders Production and Applications

  • Gunther, Bernd-H
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.409-415
    • /
    • 2002
  • In this review the methods for production and processing of isolated or agglomerated nanoscale metal particles embedded in organic liquids (nanosuspensions) and polymer matrix composites are elucidated. Emphasis is laid on the techniques of inert gas condensation (IGC) and high pressure sputtering for obtaining highly porous metal powders ("nanopowder") as well as on vacuum evaporation on running liquids for obtaining nanosuspensions. Functional properties and post-processing are outlined in view of applications in the fields of electrically conductive adhesives and anti-microbially active materials for medical articles and consumer goods.mer goods.

Electrical Properties of Conductive Copper Filler/Epoxy Resin Composites (전도성 구리충전제/에폭시수지 복합체의 전기적 특성)

  • Lee, Jung-Eun;Park, Young-Hee;Oh, Seung-Min;Lim, Duk-Jum;Oh, Dae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from $350^{\circ}C{\sim}470^{\circ}C$.

A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive (전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구)

  • Cho, Hong;Jeoung, Sun-Kyoung;Kim, Byeong-Woo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

A Study on the Electromagnetic Shielding of Conductive Powder (도전성(導電性) 분체(粉體)의 전자차폐(電磁遮蔽)에 관한 연구(硏究))

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • In this paper, shielding effectiveness(SE) of the shielding paint of electromagnetic(EM) waves was investigated with actual experiments. The shielding paint used in this study were made of powder of conductive materials - Ag, Cu, Al, Sn, Ni. Cr, Graphite and Charcoal etc. with a solubility in oil and water. Also, the paper was used as a base sheet. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, nickel were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied about the EM shielding paint. The SE strongly depended on the electric resistance by density of painting particles. SE increased as the density of particles was increasing.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive

  • Eom, Yong-Sung;Choi, Kwang-Seong;Moon, Seok-Hwan;Park, Jun-Hee;Lee, Jong-Hyun;Moon, Jong-Tae
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.864-870
    • /
    • 2011
  • As an isotropic conductive adhesive, that is, a hybrid Cu paste composed of Cu powder, solder powder, and a fluxing resin system, has been quantitatively characterized. The mechanism of an electrical connection based on a novel concept of electrical conduction is experimentally characterized using an analysis of a differential scanning calorimeter and scanning electron microscope energy-dispersive X-ray spectroscopy. The oxide on the metal surface is sufficiently removed with an increase in temperature, and intermetallic compounds between the Cu and melted solder are simultaneously generated, leading to an electrical connection. The reliability of the hybrid Cu paste is experimentally identified and compared with existing Ag paste. As an example of a practical application, the hybrid Cu paste is used for LED packaging, and its electrical and thermal performances are compared with the commercialized Ag paste. In the present research, it is proved that, except the optical function, the electrical and thermal performances are similar to pre-existing Ag paste. The hybrid Cu paste could be used as an isotropic conductive adhesive due to its low production cost.

Thermoelectric Material Design in Pseudo Binary Systems of $Mg_2Si-Mg_2Ge-Mg_2Sn$ on the Powder Metallurgy Route

  • Aizawa, Tatsuhiko;Song, Renbo;Yamamoto, Atsushi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.75-76
    • /
    • 2006
  • New PM route via bulk mechanical alloying is developed to fabricate the solid solution semi-conductive materials with $Mg_2Si_{1-x}Ge_x$ and $Mg_2Si_{1-y}Sn_y$ for 0 < x, y < 1 and to investigate their thermoelectric materials. Since $Mg_2Si$ is n-type and both $Mg_2Ge$ and $Mg_2Sn$ are p-type, pn-transition takes place at the specified range of germanium content, x, and tin content, y. Through optimization of chemical composition, solid-solution type thermoelectric semi-conductive materials are designed both for n-and p-type materials.

  • PDF

Improvement of Geometric Accuracy using Powder Mixed Electro-chemical Discharge Machining Process (전해액 내 혼합된 미세 전도성 입자를 이용한 전해 방전 가공의 형상 정밀도 향상)

  • Han M.S.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.366-369
    • /
    • 2005
  • Electrochemical discharge machining (ECDM) has been found to be potential fur the micro-machining of non-conductive materials such as ceramics or glass. However this machining process has its own inherent problem that the reproducibility is too low to get the available geometric accuracy fur micromachining applications. One main challenge in reaching this goal is the control of the hydrogen built around the tool-electrode in which happen the discharges. This paper proposes the methods to improve the geometric accuracy using powder-mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy by averaging and decreasing the concentration of spark energy.

  • PDF

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • Kim, Jin-Un;Kim, Gyeong-Min;Kim, Yong-Ho;Kim, Su-Yong;Jo, Su-Ji;Lee, Eung-Sang;Seok, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF