• Title/Summary/Keyword: Conductive polymer composites (CPCs)

Search Result 3, Processing Time 0.015 seconds

Characteristics of Expanded Graphite Filled Conductive Polymer Composites for PEM Fuel Cell Bipolar Plates

  • Oh, K.S.;Heo, S.I.;Yun, J.C.;Yang, Y.C.;Han, K.S.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.259-275
    • /
    • 2008
  • This study aims to optimize the mechanical and electrical properties of electrically conductive polymer composites (CPCs) for use as a material of bipolar plates for PEM fuel cells. The thin CPCs consisting of conductive fillers and polymer resin were fabricated by a preform molding technique. Expanded graphite (EG), flake-type graphite (FG) and carbon fiber (CF) were used as conductive fillers. This study tested two types of CPCs, EG/FG filled CPCs and EG/CF filled CPCs, to optimize the material properties. First, the characteristics of EG/FG filled CPCs were investigated according to the FG ratio for 7 and $100{\mu}m$ sized FG. CPCs using $100{\mu}m$ FG showed optimal material properties at 60 wt% FG ratio, which were an electrical conductivity of 390 S/cm and flexural strength of 51 MPa. The particle size was an important parameter to change the mechanical and electrical behaviors. The flexural strength was sensitive to the particle size due to the different levels of densification. The electrical conductivity also showed size-dependent behavior because of the different contributions to the conductive network. Meanwhile, the material properties of EG/CF filled CPCs was also optimized according to the CF ratio, and the optimized electrical conductivity and flexural strength were 290 S/cm and 58 MPa, respectively. The electrical conductivity of this case decreased similarly to the EG/FG filled case. On the other hand, the behavior of the flexural strength was more complicated than the EG/FG filled case, and the reason was attributed to the interaction between the strengthening effect of CF and the deterioration of voids.

Electromagnetic Shielding Polymer Composites with Segregated Structure for Automotive Part Application: A Review (자동차 부품 적용을 위한 Segregated structure를 갖는 전자파 차폐용 고분자 복합소재 연구동향)

  • Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • With the rapid growth of the future mobility market, a large number of electronic parts are being used in automobile, and the importance of electromagnetic interference (EMI) shielding in the automobile market is growing to minimize malfunctioning among the parts. Accordingly, conductive polymer composites (CPCs) are getting a lot of attention as EMI shielding materials for the automotive, but there are still challenges in CPCs like high content of conductive filler to achieve proper EMI shielding effectiveness, and poor mechanical properties. This paper introduces main methods to manufacture CPCs with segregated filler structure, which can significantly reduce the filler content, and analyzes EMI shielding performance of each manufacturing method.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.