• 제목/요약/키워드: Conductive material

검색결과 749건 처리시간 0.034초

Facile Coating of Poly(3,4-ethylenedioxythiophene) on Manganese Dioxide by Galvanic Displacement Reaction and Its Electrochemical Properties for Electrochemical Capacitors

  • Kim, Kwang-Heon;Kim, Ji-Young;Kim, Kwang-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2529-2534
    • /
    • 2012
  • Poly(3,4-ethylenedioxythiophene) coated Manganese Dioxide (PEDOT/$MnO_2$) composite electrode was fabricated by simply immersing the $MnO_2$ electrode in an acidic aqueous solution containing 3,4-ethylenedioxythiophene (EDOT) monomers. Analysis of open-circuit potential of the $MnO_2$ electrode in the solution indicates the reduction of outer surface of $MnO_2$ to dissolved $Mn^{2+}$ ions and simultaneously oxidation of EDOT monomer to PEDOT on the $MnO_2$ surface to form a PEDOT shell via a galvanic displacement reaction. Analysis of cyclic voltammograms and specific capacitance of the PEDOT/$MnO_2$, conductive carbon added $MnO_2$ and conductive carbon added PEDOT/$MnO_2$ electrodes suggests that the conductive carbon acted mainly to provide a continuous conducting path in the electrode to improve the rate capability and the PEDOT layer on $MnO_2$ acts to increase the active reaction site of $MnO_2$.

카본블랙/섬유강화 복합재료의 전자파 차폐효과 (Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite)

  • 김진석;한길영;안동규;이상훈;김민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과 (Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate)

  • 문수영;김민영;변동욱;이건희;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.

마우스 사출성형금형의 냉각 특성 향상을 위한 열전도성 금형 설계 (Design of the Thermally Conductive Mould to Improve Cooling Characteristics of Injection Mould for a Mouse)

  • 안동규;김현우;이기용
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.201-209
    • /
    • 2009
  • The objective of present research work is to design the heat conductive mould to improve cooling characteristics of the injection mould for a mouse. In order to obtain the high cooling rate of the mould, a heat conductive mould with three different materials was designed. The materials of the base structure, the mid-layer and the molding part of the heat conductive mould were chosen as Cu-Ni alloy (Ampcoloy 940) to improve the heat conductivity of the mould, Ni-Cu alloy (Monel 400) to reduce a thermal stress, injection tool steel (P21), respectively. Through the three-dimensional transient heat transfer analysis and the thermal stress analysis, the effects of the geometrical arrangement of each material on the cooling characteristics and the thermal stress distribution were examined. From the results of the analyses, a proper design of the thermal conductive mould was obtained.

연속 구배형 전도성 표면 구현을 위한 탄성중합체 코팅에 관한 연구 (A study on elastomer coating technology for continuous gradient conductive surface)

  • 라문우;윤길상;박성제
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.1-11
    • /
    • 2019
  • Recently, studies on the development of flexible electronic devices by combining flexible materials and a conductor have been actively performed as interest in wearable devices. Especially, carbon nanotubes (CNT) or graphene coating have been used to construct a circuit to induce improvement in flexibility and rigidity. Various technologies have been developed in the surface coating of conductive materials, which are key to the manufacture of flexible electronic devices. Surface coating products with 3D coating and micro-patterns have been proposed through electrospinning, electrification, and 3D printing technologies. As a result of this advanced surface coating technology, there is a growing interest in manufacturing gradient conductive surfaces. Gradient surfaces have the advantage that they are adapted to apply a gentle change or to inspect optimum conditions in a particular region by imparting continuously changing properties. In this study, we propose a manufacturing technique to produce a continuous gradient conductive surface by combining a partial stretching of elastomer and a conductive material coating, and introduce experimental results to confirm its performance.

공기 중에서 동작하는 전도성 고분자 액추에이터용 고체전해질의 특성 분석 밑 실험적 검증 (Characterization and Experimental Verification of Solid Polymer Electrolyte for Conductive Polymer Actuator Operated in Air)

  • 안호정;이승기;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권3호
    • /
    • pp.125-133
    • /
    • 2002
  • In order to fabricate stable conductive polymer actuators which can be operated in air, conductivity and solidity of polymer electrolyte materials have been studied. It was found that Nafion+LiCl is appropriate material to be used for conductive polymer actuator. Using the Nafion+LiCl solid polymer electrolyte, single layer PPy actuators have been fabricated and their deflection was measured. Double layer PPy actuators make up for shortcoming of single layer PPy actuator and displacement and frequency response can be improved by fabrication of double layer PPy actuator. This kind of all-solid-polymer actuator can be used for practical applications.

전지전도성 시멘트모르타르의 특성에 관한 연구 (A Study on the Properties of Electrical Conductive Cement Mortar)

  • 최길섭;김봉찬;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.136-141
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete ia a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry (e.g for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with graphite as filler. From the test result, as the ratio of graphite/cement increased, fluidity, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement ratio and water content of specimen. From this study, it is enough to assure the use of graphite as a conductive filler for electrical conducive cement mortar.

  • PDF

Navigation Connection용 ACF(Anisotropic Conductive Film)의 수명 예측 (Lifetime Estimation of an ACF in Navigation)

  • 유영창;신승중;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1277-1282
    • /
    • 2008
  • Recently LCD panels have becom very important components for portable electronics. In the high density interconnection material, ACF's are used to connect the outer lead of the tape automated bonding to the transparent indium tin oxide electrodes of the LCD panel. ACF consists of an adhesive polymer matrix and randomly dispersed conductive balls. In this study, we analyzed Failure Mode / Mechanism of ACF which is identified Conductive ball Corrsion, Delamination, Crack and Polymer Expansion / Swelling. In ALT(Accelerated Life Test), we select primary stress factors as temperature and humidity. As time passes by, an increase of connection resistance was observed. In conclusion, we have found that high temperature / humidity affects the adhesion.

  • PDF

Characteristic of Frost Formed on Thermally Conductive Plain Plastic Plate

  • Lee Jang-Seok;Lee Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.138-144
    • /
    • 2005
  • In order to select a new material for a heat exchanger, the frosting behavior of a thermally conductive plastic based on PBT was compared to the frosting behavior of aluminum and three types of plastics based on PTFE. The frosting behavior on the 1 mm thick PBT specimen was similar to that of the aluminum specimen but not that of the pure PTFE specimen. The properties of the frost formed on the specimens were affected by both the thermal conductivity and surface characteristics of the materials. The heat and mass transfer rates of the thermally conductive plastic were almost equivalent to those of the aluminum specimen.

u-헬스케어 응용을 위한 전도성 섬유 심전도 전극의 섬유적 특성 시험 연구 (A Study on Fabric Material Test of Conductive-Fabric Type ECG Electrode for u-Healthcare Application)

  • 강보규;황인호;유선국
    • 재활복지공학회논문지
    • /
    • 제6권2호
    • /
    • pp.31-41
    • /
    • 2012
  • 의료기기의 발전과 IT융합기술의 접목으로 때와 장소에 관계없이 생체신호의 측정이 가능하게 되었으며, 다양한 형태의 u-헬스케어 기기가 개발되어 일상생활과 가정에서 불편함이 없이 건강변수 측정이 가능하게 되었다. 또한 사용자를 고려해 의복처럼 착용하고 생활하며 생체 신호를 측정할 수 있는 스마트 의류에 전도성 섬유의 활용이 이루어지고 있다. 하지만 이러한 u-헬스케어 기기에 대한 연구 및 개발이 우선되고 있는 반면 성능평가 기준 마련은 미흡한 실정이다. 이에 시판전의 시험검사나 시판후의 수거 검사 시에 성능평가를 위한 표준시험방법 개발 등에 따른 가이드라인 마련에 힘을 쓰고 있는 실정이다. 본 논문에서는 섬유적 특성 시험을 통해 전도성 섬유의 착용형 u-헬스케어 기기에 전극으로 접목 가능성 여부를 연구하였다.

  • PDF