• Title/Summary/Keyword: Conductive material

Search Result 749, Processing Time 0.027 seconds

A study on Dynamic Characteristics of an Eddy Current Damping (와전류감쇠기의 동특성에 관한 연구)

  • Park, Jungsam;Bae, Jaesung;Hwang, Jaihyuk;Kang, Kukjeong
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.24-28
    • /
    • 2008
  • Eddy current are induced when a nonmagnetic, conductive material is moving as the result of being subjected to the magnetic field, or if it is placed in a time-varying magnetic field. These currents circulate in the conductive material and are dissipated, causing a repulsive force between the magnet and conductor. Using this concept, eddy current damping can be used as a form of viscous damping. This paper investigated analytically and experimentally the characteristics of an eddy current damping when a permanent magnet is placed in a conductive tube. The theoretical model of the eddy current damping is developed from electromagnetics and is verified from Maxwell program and experiments. From these comparisons, although predictability is not accurate at high excitation frequencies, the present model can be used to predict damping force at low excitation frequencies. In order to improve the prediction of the characteristics of an eddy current damping, the induced magnetic flux densities have to be considered in following researches.

  • PDF

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Laser Direct Etching on Transparent Conductive Oxide Films Sputtered on Polycarbonate Substrates (PC 기판상에 스퍼터링된 투명전도 산화막의 레이저 식각 특성)

  • Lee, Jeongmin;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.146-150
    • /
    • 2014
  • As a method of simple patterning of transparent conductive oxide (TCO) films deposited on flexible substrates, laser direct etching was carried out on TCO films sputtered on polycarbonate (PC) substrates. As a result of different binding energies in TCO films, indium tin oxide (ITO) and indium gallium zinc oxide (IGZO) were more easily etched than zinc oxide with different $Nd:YVO_4$ laser beam conditions.

The Effect of Dielectric Firing Process in PDP on the Properties of ITO Prepared by Reactive RF Sputtering (반응성 스퍼트링에 의한 ITO의 형성과 유전체 소성공정중의 특성변화에 관한 연구)

  • 남상옥;지성원;손제봉;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.510-514
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn 10wt%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature 15$0^{\circ}C$ and 8% $O_2$. Partial pressure showed about 3.6 Ω/$\square$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF

Enhanced Carbon Nanotube Dissolution for Electrically Conductive Films (전기전도성 필름제조를 위한 탄소나노튜브 용해도 향상)

  • Lee, Geon-Woong;Han, Dong-Hee;Park, Su-Dong;Kang, Dong-Pil;Kumar, Satish
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.65-66
    • /
    • 2006
  • Solubility of single wall carbon nanotubes (SWNTs) has been determined in various dispersing media by using the solvent parameters such as Kamlet-Taft parameter and 3-dimensional parameters. Nitric acid-treated SWNTs exhibit significantly improved solubility in hydrogen bondable solvents as well as in solvent mixtures. The forming bucky gel with ionic liquid allows for the new group of dissolving solvent. The dissolution behavior of SWNTs provides a route for SWNT dispersion/exfoliation in preparing electrically conductive films such as transparent electrode.

  • PDF

Response Characteristic Analysis of ZnO Varistors by the Conductive E1 Pulse (전도성 E1 펄스에 대한 ZnO 바리스터의 동작특성 분석)

  • Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.241-245
    • /
    • 2019
  • This work presents the response characteristics of a ZnO varistor to conductive EMP. An E1 pulse, standardized to MIL-STD-188-125-1, was applied to the varistors wherein the residual current and response times were measured with the applied E1 pulse current. Additionally, the response time was measured according to the length of the connection path. Consequently, the amplitude of the residual voltage through the ZnO varistors was increased with increasing amplitude of the applied E1 pulse current. As the length of the connection path increased, the operating response time and residual peak voltage also increased. These results indicate that the response characteristics of ZnO varistors can be applied to basic data to support the use of varistors as a protective measure against conductive EMP.

Development of Epoxy Based Stretchable Conductive Adhesive (신축 가능한 에폭시 베이스 전도성 접착제 개발)

  • Nam, Hyun Jin;Lim, Ji Yeon;Lee, Chang Hoon;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • To attach a stretchable/flexible electrode to something or something to on electrode, conductive adhesives must be stretchable/flexible to suit the properties of the electrode. In particular, conductive adhesive require durability and heat resistance, and unlike conventional adhesives, they should also have conductivity. To this end, Epoxy, which has good strength and adhesion, was selected as an adhesive, and a plasticizer and a reinforcement were mixed instead of a two-liquid material consisting of a conventional theme and a hardener, and a four-liquid material was used to give stretchability/flexibility to high molecules. The conductive filler was selected as silver, a material with low resistance, and for high conductivity, three shapes of Ag particles were used to increase packing density. Conductivity was compared with these developed conductive adhesives and two epoxy-based conductive adhesives being sold in practice, and about 10 times better conductivity results were obtained than products being actually sold. In addition, conductivity, mechanical properties, adhesion and strength were evaluated according to the presence of plasticizers and reinforcement agent. There was also no problem with 60% tensile after 5 minutes of curing at 120℃, and pencil hardness was excellently measured at 6H. As a result of checking the adhesion of electrodes through 3M tape test, all of them showed excellent results regardless of the mixing ratio of binders. After attaching the Cu sheet on top of the electrode through conductive adhesive, the contact resistance was checked and showed excellent performance with 0.3 Ω.

Preparation and Properties of Polymer Blends Type Humidity Sensor for Process Safety (공정안전용 Polymer Blend형 습도센서의 특성 연구)

  • Kang Young-Goo;Cho Myoung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.51-56
    • /
    • 2004
  • Conductive polymer blends and composites are widely used for different safety application such as electrostatic charge dissipation(ESD), electromagnetic interference(EMI) shielding, electrostatic prevention and safety chemical sensor. In order to prepare a impedance-type humidity sensor that is durable at high humidities and high temperature, electically conductive polymer blends based on diallyldimethylammonium chloride(DADMAC) and epoxy were prepared in this study. The polymer blends type conductive ionomer exhibits reaction each other DADMAC and epoxy in FT-IR and DSC analysis. The blends material was traced by new peak at 1600cm-1 and appeard improvement of thermal resistance by melting point shift. Alumina substrate was deposited a pair of gold electrodes by screen printing. The blend material were spin-coated with a thin film type on the surface of alumina substrate. The polymer bleld type sensor exhibits a linear impedance increasing better than DADMAC coated humidity sensor. Also it shows good sensitivity, low hysteresis and durability against high humidity.

Study of the Electro-Optic Characteristics Depending on Electric Characteristic of the Black Matrix in a Homogeneous Liquid Crystal Cell Driven by Fringe-Electric Field (프린즈 전기장에 의해 구동되는 수평 배향 액정셀에서 black matrix의 전기적 특성이 셀의 전기광학 특성에 미치는 영향에 관한 연구)

  • 김미숙;김향율;고재완;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1008-1013
    • /
    • 2003
  • We have studied the effect of black matrix (BM) according to the dielectric anisotropy of liquid crystals (LCs) for a homogeneously aligned LC cell driven by fringe-electric field. The results show that for a LC with positive dielectric anisotropy (+LC) there is a large transmittance change when using a conductive BM, whereas the transmittance change is low for a LC with negative dielectric anisotropy (-LC). The conductive BM existing on top substrate produces vertical electric field, which makes the LC molecules be tilt upward from the substrate and have small twist angle for the +LC. However, for the -LC the conductive BM affects the LC distribution only slightly due to characteristic of the -LC orienting perpendicular to the field. Therefore, for the +LC the electro-optic characteristics are strongly dependent on conductivity of the BM on top substrate in a homogeneous liquid crystal cell driven by fringe-electric field.

Thermal Characteristics of Heating Films Including Conductive Graphite (전도성 흑연을 포함하는 발열 필름의 열적 특성)

  • Choi, Gyuyeon;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.500-504
    • /
    • 2020
  • Heating films were prepared with composites of poly (methyl methacrylate) and conductive graphite. The as-prepared composite was deposited on a PET film and then fabricated using a bar coater to produce a film with uniform thickness. Copper electrodes were attached to both ends of the as-prepared film, and the heating characteristics of the film were analyzed while applying a DC voltage. The electrical conductivity and heating temperature of the heating films depended on the size, structure, content, and the dispersion characteristics of the graphite in the composite. The thermal energy was adjusted by controlling the electrical energy, based on the Joule heating theory. The electrical resistance of the film was altered in proportion to Ohm's law, and the heating temperature was changed according to the structure of the film (interelectrode spacing or electrode length) and the conductive graphite content. When the content of conductive graphite in the film increases, the electrical resistance decreases, and the heating temperature increases; however, there is no significant change above a certain content (50%).