• Title/Summary/Keyword: Conductive filler

Search Result 106, Processing Time 0.025 seconds

The Synthesis of Copper Nanowire with high aspect ratio by capping agent for textile electronics

  • Byun, Woonghee;Kim, Minho;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.379.1-379.1
    • /
    • 2016
  • Recently, new types of wearable devices such as textile electronics are considered as the next generation wearable electronics. To realize the textile electronics, conductive fibers are required to supply the power and for signal processing. Conventionally, silver nanowires (Ag NWs) have been attracted as one of the conductive additives in the fibers, however, using the Ag NWs may lead to high production cost since it is a noble metal. Many researches have been done to replace the Ag NWs into a cheaper materials such as copper nanowires (Cu NWs). Here, we synthesized ultra-long Cu NWs for a conductive filler material in conductive fibers, taking advantages of their structural features. To investigate the effect of capping agents on the aspect ratio of the synthesized Cu NWs, we used various capping agents such as hexadecylamine, butylamine, ethylenedilamine and oleylamine in the Cu NW synthesis. In this research, the effects of capping agents on the structure and the synthesis of Cu NWs are presented.

  • PDF

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Effect of Non-Conducting Filler Additions on Anisotropic Conductive Adhesives(ACAs) Properties and the Reliability of ACAs Flip Chip on Organic Substrates (이방성 전도 접착제 물성과 유기 기판 플립 칩의 신뢰성에 미치는 비전도성 충진재의 영향)

  • Im, Myeong-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2000
  • We investigated the effect of filler content on the thermo-mechanical properties of modified ACA composite materials by incorporation of non-conducting fillers and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACA s composites with different content of non-conducting fillers, differential scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechnical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Application in Conductive Filler by Low-Temperature Densification and Synthesis of Core-Shell Structure Powder for Prevention from Copper Oxidation (구리 산화 방지를 위한 Core-Shell 구조 입자 합성과 저온 치밀화를 통한 도전성 필러 응용)

  • Shim, Young Ho;Park, Seong-Dae;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2012
  • Recently, it has been increasing trend to use conductive materials as electronics and communication technology in electronics industry are developing. The noble metal such as Ag, Pt, Pd etc. are mostly used as conductive materials, To reduce production cost, alternative materials with similar characteristics of noble metals are needed. Copper has advantages, i.e its electronic properties are similar to noble metals and low cost than noble metal, but its use has been restricted because of oxidation in air. In this study, the tin film was coated on copper by electroless plating to protect copper from oxidation and to confirm the effects of temperature, pH, amount of $SnCl_2$, and feeding speed in plating conditions. Additionally, we apply $Cu_{core}Sn_{shell}$ powder as conductive filler with low-temperature densification and analysis by SEM, XRD, FIB and 4-Point Probe techniques. As result of the study, tin film was coated well on copper and was protected from oxidation. After low-temperature densification treatment, the meted tin made chemical interconnections with copper. Accordingly, conductivity was increased than before condition. We hope $Cu_{core}Sn_{shell}$ powder to replace noble metals and use in the electronic field.

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

Characterization of Titanium Diboride Composite Bipolar Plate for Polymer Electrolyte Membrane Fuel Cell (전해질 연료전지용 복합분리판의 특성에 미치는 TiB2 첨가효과)

  • Park, Jong-Moon;Sohn, Je-Ha;Park, Yong-Il;Lee, Dong-Gu;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.169-174
    • /
    • 2014
  • The effect of varying amounts of graphite and $TiB_2$ on the electrical conductivity of composite bipolar plates was systematically studied. In this study, Titanium diboride ($TiB_2$) which has a high electrical conductivity, was selected as a filler and a additive material instead of conventional graphite. For proper distribution of the filler and matrix materials, ball milling using alumina balls was conducted for 1h, and then the hot press method was applied for the preparation of composite samples. The results showed a rapid increase in the electrical conductivity of composite bipolar plates at the critical filler content. However, $TiB_2$ and graphite composite bipolar plates showed similar increases in the electrical conductivity even though $TiB_2$ has a higher electrical conductivity than graphite. In addition, it was also found that a small addition of $TiB_2$ to graphite filler could be very effective for increasing the electrical conductivity and flexural strength of the composite bipolar plate.

Effect of Filler Size on the Thermal Diffusivity of Nylon 66/SiC Composites (필러 크기가 Nylon 66/SiC 복합재료의 열확산도에 미치는 영향)

  • Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.169-173
    • /
    • 2014
  • The effect of filler sizes on the thermal diffusivity of Nylon 66/SiC composites was investigated. By loading 60 vol% of SiC fillers on Nylon 66, the thermal diffusivity of the composites increased more than 10 times than that of unfilled Nylon 66 and the thermal diffusivity of composites with filler sizes of $24{\mu}m$ and $76{\mu}m$ increased to $2.2{\times}10^{-2}cm^2/sec$ and $1.75{\times}10^{-2}cm^2/sec$, respectively. It is speculated that the smaller filler size ($24{\mu}m$) of SiC is more favorable for the formation of thermal conductive path that the larger size ($76{\mu}m$) of filler composites. The thermal diffusivity of Nylon 46/SiC 400 (60 vol%) composites was $1.61{\times}10^{-2}cm^2/sec$ that was lower than that of Nylon 66/SiC (60 vol%) composites.

Mechanical, Electrical and Thermal Properties of Polymer Composites Containing Long Carbon Fibers and Multi-walled Carbon Nanotubes (탄소장섬유와 다중벽 탄소나노튜브가 혼입된 고분자 복합재료의 기계적, 전기적 및 열적 특성)

  • Min Su Kim;Ki Hoon Kim;Bo-kyung Choi;Jong Hyun Park;Seong Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • Mechanical, electrical and thermal properties of polymer composites can be improved simultaneously by incorporating carbon fibers (CFs), which are beneficial for improving the mechanical properties, and multi-walled carbon nanotubes (MWCNTs), which are advantageous for improving the conductive properties. In this study, MWCNTs were incorporated into carbon long fiber thermoplastic (CLFT), which has excellent mass production processability and excellent mechanical properties, to control electrical and thermal properties. The mechanical and electrical properties of the prepared composites were most significantly influenced by the amount of filler incorporated. On the other hand, the thermal properties were improved due to the formation of a filler network interconnected by the incorporation of MWCNTs. By adjusting the filler amount, filler composition, and filler network structure of MWCNT-incorporated CLFT, the mechanical, electrical, and thermal properties could be controlled.

Influence of Carbon Black-embed Carbon Nanotubes on Electrochemical Performance of Activated Carbon-based Electrodes (활성탄소 전극의 전기화학적 특성에 대한 카본블랙 함입된 탄소나노튜브의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.133.1-133.1
    • /
    • 2010
  • In this work, carbon black(CBs)-embed multi-walled carbon nanotubes (MWNTs) as conductive fillers for activated carbon(ACs)-based electrodes for supercapacitor were prepared by chemical reduction of oxidized MWNTs and CBs. The effect of CBs-MWNT composites on electrochemical performances of ACs-based electrodes were investigated as a function of CB-MWNT ratio. It was found that CBs-MWNTs composites were formed by the reduction reaction of the functional groups of oxidized MWNTs and CBs. It was resulted in the conjugation of CBs onto the MWNT having high surface area and aspect ratio, leading to the enhanced electrical properties of MWNTs. The electrochemical performances, such as current density, charge-discharge, and specific capacitance of the ACs/CBs-MWNT electrodes were higher than that of ACs/MWNTs and conventional ACs/CB electrodes, which was attributed to the synergistic effect of CBs-MWNTs as a conductive filler.

  • PDF