• Title/Summary/Keyword: Conductive filler

Search Result 106, Processing Time 0.031 seconds

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

Fabrication and Characterization of graphite reinforced conductive polymer composites (탄소 보강 전도성 고분자 복합재료의 제조 및 특성 평가)

  • Heo S. I.;Yun J. C.;Jung C. K.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.147-150
    • /
    • 2004
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder (conductive filler) was mixed with an epoxy resin to impart electrical property in composites. The ratio of graphite powder was varied to investigate electrical property of cured conductive composites. In this study, graphite filled conductive polymer composites with high filler loadings$(>60wt.\%)$ were manufactured to accomplish high electrical conductivity(> 100S/cm). Graphite powder increase electrical conductivity of composites by direct physical contact between particles. While high filler loadings are needed to attain good electrical property, the composites becomes brittle. So the ratio of filler to epoxy was varied to optimize of cured composites. The optimum molding pressure according to filler was proposed experimentally.

  • PDF

EMI Shielding Efficiency of Recycled plastic/Hybrid Conductive filer Composites filled Electro Arc furnace Slag (제강Slag 충진 폐플라스틱/복합 전도성 filler복합재료의 전자파 차폐 효과)

  • Kang Young-Goo;Song Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.80-85
    • /
    • 2004
  • Electromagnetic interference(EMI) shielding characteristics of composite filled with Cu flake and carbon brush powder as hybrid conductive filler and EAF slag have been studied. The coaxial transmission line method of ASTM D4935-99 was used to measure the EMI Shielding effectiveness of composites as formulation in frequency rage $100\~1,000MHz$ The SE also increases with the increase in flier loading. The hybrid filler filled composites show higher SE compared to that of only Cu flake. The correlation between SE and conductivity of the various composites is also discussed. The results indicate that the composites having higher filler loading$({\geq}40wt.\%)$ can be used for the purpose of safety materials to protect hazardous electromagnetic interference.

Fabrication and Characteristics of Shielding Effects for the Complex Conductive Filler (복합 전도성 필러의 제작과 전자파 차폐 특성)

  • Park, Ju-Tae;Park, Jae-Sung;Do, Young-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.122-127
    • /
    • 2006
  • A series of conductive filler were prepared with electroless plating method. Base conductive materials of the filler were nickel and copper. The cores were prepared with Nylon 6 and rayon in different aspect ratio. Also, various complexes were made with ABS resin and conductive filler with different filler feed ratio. The conductivity of the filler was measured with conductivity analyzer and the size distributions of fillers was measured with laser particle size analyzer. Electromagnetic wave shielding efficiency of each complex film was measured with flange circular coaxial transmission line sample holder within the 1MHz$\sim$1GHz bandwidth range. From this study, the conductivity of filers surpass that of other carbon films. It is available that the filler made of fibrous materials can be applied in plastic molding industry of electric appliances as a EMI filler.

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly

  • Jang, Kyung-Woon;Kwon, Woon-Seong;Yim, Myung-Jin;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, thermo-mechanical and rheological properties of NCPs (Non-Conductive Pastes) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermo-mechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature ($T_g$) and storage modulus at room temperature became higher. While, coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermo-mechanical properties such as modulus, CTE, and $T_g$. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.

  • PDF

Electrical Properties of Conductive Copper Filler/Epoxy Resin Composites (전도성 구리충전제/에폭시수지 복합체의 전기적 특성)

  • Lee, Jung-Eun;Park, Young-Hee;Oh, Seung-Min;Lim, Duk-Jum;Oh, Dae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from $350^{\circ}C{\sim}470^{\circ}C$.