• Title/Summary/Keyword: Conductive Wall

Search Result 67, Processing Time 0.023 seconds

Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon;Min, Byung Ghyl;Lee, Sang Cheol;Park, Sung Bum;Lee, Tae Dong;Park, Min;Kumar, Satish
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.198-203
    • /
    • 2004
  • Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

Conjugate Heat Transfer for Circular Absorber in Parabolic Trough Concentrator (PTC형 집열기의 원관형 흡수기에서의 복합열전달)

  • Chung, J.M.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • In the present study, the characteristics of conductive and convective heat transfer occurred in a circular absorber of PTC (parabolic trough concentrator) for medium temperature solar energy utility were numerically investigated. A circular tube was considered as an absorber and the shape of PTC modeled in this study was based on the system that was installed in Korea Institute of Energy Research. Not only convection inside the tube but also conduction through the wall of the tube were analyzed, simultaneously. Circumferentially non-uniform heat flux that was simulated from the non-uniform solar disc model proposed by Jose was applied as thermal boundary condition on the tube surface. And, hydrodynamically fully developed laminar velocity profile was used as the inlet boundary condition and it was assumed that the working fluid was water. And, local heat fluxes at the interface of the tube and the working fluid were calculated for different wall thickness and thermal conductivity of the tube at various Reynolds number. Based on the results, the effects of thermal conduction of the tube on the local heat transfer were investigated.

  • PDF

A Study on the Electrical Conductivity and Electromagnetic Shielding of High Performance Fiber Reinforced Cementitious Composites(HPFRCC) (고성능 시멘트 복합체의 전기전도도 및 전자파 특성 시험 평가)

  • Lee, Nam-Kon;Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study investigated electrical conductivity, electromagnetic shielding effectiveness, and mechanical property to improve electromagnetic shielding performance of high performance fiber reinforced cementitious composites (HPFRCC). Steel fiber, steel slag and carbon black as a conductive material were incorporated into the HPFRCC mixes. In addition, 2% CNT solution which was produced by dispersing multi-wall carbon nanotube (MWCNT) into water was used as a conductive material. In the test results, electrical conductivity of HPFRCC specimens was very low except for the specimen incorporating 1% carbon black. Micro structure of cement matrix was changed as the curing time increased, which negatively affected the conductive network of HPFRCC. In case of HC1 specimen showing a conductive network (0.083 S/cm), the electrical conductivity of the specimen after being dried at $60^{\circ}C$ for 72 hours to exclude the effect of water on electrical conductivity was significantly reduced to 0.0003 S/cm. The most important parameter of electromagnetic shielding effect was found to be a steel fiber while the effect of carbon black and steel slag was very few. The correlation between electrical conductivity and electromagnetic shielding effect does not seem to be clear.

Optical energy band gap of the conductive $AgGaSe_2$ layers

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.46-46
    • /
    • 2009
  • The photoconductive $AgGaSe_2$(AGS) layers were grown by the hot wall epitaxy method. The AGS layer was confirmed to be the epitaxially grown layer along the <112> direction onto the GaAs(100) substrate. The band-gap variation as a function of temperature on AGS was well fitted by $E_8(T)=1.9501-8.37{\times}10^{-4}T^2/(T+224)$. The band-gap energy of AGS obtained at 293 K was determined to be 1.8111 eV.

  • PDF

PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor

  • Park, Jong Hyeok;Lee, Sang Young;Kim, Jong Hun;Ahn, Sunho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.143-148
    • /
    • 2012
  • The unique effects of highly conductive conducting polymer/SWNT (single walled carbon nanotube) composite nanoparticles in electric double layer capacitors are studied for the enhancement of the adhesive properties, specific capacitance and power characteristics of the electrode. Because the conducting polymer/SWNT composite material, which is believed to act as a polymer binder, an active material for charge storage and a conducting agent, is well distributed on the activated carbon, greatly enhanced adhesion properties, cell capacitance and power characteristics were obtained.

Fabrication and Straining Model of a CNT/EAP Composite Film (카본나노튜브/도전성폴리머(CNT/EAP) 복합재 필름의 제조 및 특성분석)

  • Zhang, Shuai;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. CNT/EAP was fabricated successfully using the chemical polymerization method.

  • PDF

Temperature Uniformity of the Glass Panel Heated in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1950-1956
    • /
    • 2005
  • An analysis has been carried out to investigate the effect of the reflectivity on the temperature distribution of a glass panel by infrared radiant heating. Halogen lamps are used to heat the panel, located near the top and bottom of the rectangular chamber. The thermal energy is transferred from the lamps to the panel only by radiation and it is considered by using view factor. The conductive transfer is limited inside the panel. The results show that the uniformity of the temperature distribution of the panel is improved and, at the same time, the time for heating increases as the wall reflectivity increases. The temperature difference between the center and the corner reaches a maximum in the early stage of the heating process and then decreases until it reaches a uniform steady-state value.

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Application of Nano-carbons in Field Emission Display (전계방출표시소자에서 나노 카본의 응용)

  • Kim, Kwang-Bok;Song, Yoon-Ho;Hwang, Chi-Sun;Jung, Han-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.76-79
    • /
    • 2003
  • The characteristic of single wall carbon nanotube (SW-CNT) and herringbone nano fiber (HB-CNF) emitters was described. SW-CNT synthesized by arc discharge and HB-CNF prepared by thermal CVD were mixed with binders and conductive materials, and then were formed by screen-printing process. In order to obtain efficient field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNT and CNF emitters. The basic structure of FED was of a diode type through fully vacuum packaging. Also, we proposed a new triode type of field emitter using a mesh gate plate having tapered holes and could achieve the ideal triode properties with no gate leakage currents.

  • PDF

Heat Transfer with Linearly Anisotropic Scattering Medium in a Plane Layer (두 무한 평면 사이의 선형 이방성 산란 매질에서의 열전달)

  • Byun, K.H.;Smith, T.F.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.435-441
    • /
    • 1988
  • The purpose of this study is to apply the zone method expressions for a gray, absorbing, emitting, and linearly anisotropic scattering medium enclosed in an infinite plane layer to evaluate heat transfer applications. The medium is assumed to be homogeneous and has a refractive index of unity. The boundary surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature. Radiative equilibrium condition, combined conductive and radiative heat transfer, and thermal ignition are studied in terms of the governing parameters, and the results are compared with previous studies. Wall heat flux results agree well with those of others. Except for the minor discrepancies observed for some cases, temperature results also agree well with those of previous studies. Good agreement with results from other methods indicates the accuracy of the zone method as well as its compatibility with other modes of heat transfer.

  • PDF