• Title/Summary/Keyword: Conductive Properties

Search Result 852, Processing Time 0.024 seconds

Local surface potential and current-voltage behaviors of $Cu(In,Ga)Se_2$ thin-films with different Ga/(In+Ga) content (Ga/(In+Ga) 함량비에 따른 $Cu(In,Ga)Se_2$ 박막의 국소적 영역에서의 표면 퍼텐셜과 전류-전압 특성 연구)

  • Kim, G.Y.;Jeong, A.R.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Hwang, D.K.;Kang, J.K.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.149-152
    • /
    • 2012
  • $Cu(In,Ga)Se_2$ (CIGS) is one of the most promising photovoltaic materials because of large conversion efficiency which has been achieved with an optimum Ga/(In+Ga) composition in $CuIn_{1-x}Ga_xSe_2$ (X~0.3). The Ga/(In+Ga) content is important to determine band gap, solar cell performances and carrier behaviors at grain boundary (GB). Effects of Ga/(In+Ga) content on physical properties of the CIGS layers have been extensively studied. In previous research, it is reported that GB is not recombination center of CIGS thin-film solar cells. However, GB recombination and electron-hole pair behavior studies are still lacking, especially influence of with different X on CIGS thin-films. We obtained the GB surface potential, local current and I-V characteristic of different X (00.7 while X~0.3 showed higher potential than 100 mV on GBs. Higher potential on GBs appears positive band bending. It can decrease recombination loss because of carrier separation. Therefore, we suggest recombination and electron-hole behaviors at GBs depending on composition of X.

  • PDF

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1) (폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1))

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.

Electrochemical Synthesis of Conducting Polypyrrole in Nucleophilic Solvent (친핵성 용매하에서 전도성 Polypyrrole의 전기화학적 합성)

  • Lee, Hong-Ki;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.616-623
    • /
    • 1994
  • Conductive Polypyrrole films have been synthesized by electrochemical method in nucleophilic solvent such as N, N-dimetylformamide(DMF), dimethylsulfoxide(DMSO). The effect of protic acid as supporting electrolyte to decrease the nucleophilicity of the solvent was studied. Cyclic voltammetry, I-t transients were carried out to investigate the electrodeposition of conductive polypyrrole film on platinum electrode. Three peaks of 0.65V, 0.85V, and 1.2V vs. $Ag/AgNO_3$ indicated oxidation of monomer, oxidation of pyrrole to the platinum electrode and decomposition of polypyrrole film, respectively. With the I-t transients, nucleation process was confirmed and from obtained linear fits of I vs.t2resembles the metal film formation, and 2.15-2.26 of n-value could be calculated. As concentration of pyrrole or prolic acid was increased, the conductivity of polypyrrole film increased linearly. Tensile strength and elongation were investigated for comparing the mechanical properties and also SEM was performed for morphology investigation.

  • PDF

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass (방사성 폐기물 처분부지의 안정성 평가검증을 위한 균열암반 특성화 연구)

  • 이영훈;신현준;김기인;심택모
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 1999
  • The purpose of this study is the simulation of discontinuous rockmass and identification of characteristics of discontinuity network as a branch of the study on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste. In this study the site for LPG underground storage was selected for the similarities of the conditions which were required for disposal site of radioactive waste. Through the identification of hydraulic properties. characteristics of discontinuities and selection of discontinuity model around LPG underground storage facility. the applications of discrete fracture network model were evaluated for the analysis of pathway. The orientation and spatial density of discontinuities are primarily important elements for the simulation of groundwater and solute transportation in discrete fracture network model. In this study three fracture sets identified and the spatial intensity (P$_{32}$) of discontinuities is revealed as 0.85 $m^2$/㎥. The conductive fracture intensity (P$_{32c}$) estimated for the simulation area around propane cavern (200${\times}$200${\times}$200) is 0.536 $m^2$/㎥. Truncated conductive fracture intensity (T-P$_{32c}$) is calculated as 0.26 $m^2$/㎥ by eliminating the fracture with the iowest transmissivity and based on this value the pathway from the water curtain to PC 2. PC 3 analyzed.

  • PDF

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte (탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석)

  • Kim, Chang Hyun;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • In this study, flexible supercapacitor based on the all solid state electrolyte with PVA (polyvinyl alcohol)-$H_3PO_4$, ionic liquid as a BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate) and reduced graphene oxide/conductive polymer composite was fabricated and characterized electrochemical properties with function of its flexibility. In order to measure and compare that electrochemical performances (including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge,after 0~100th bending test) of prepared flexible supercapacitor based on reduced graphene oxide/conducting polymer composite and all solid state electrolyte, we have conducted press machine with constant pressure ( 0.01/cm2) for $100^{th}$ bending test. As a result, specific capacitance of the flexible supercapacitor was 43.9 F/g which value decreased to 42.0 and 40.1 F/g after 50 and $100^{th}$ bending test, respectively. This result exhibited that decreased electrochemical property of the flexible supercapacitor effected on physical stress on the electrode after repeated bending test. In addition, we have measured that electrode surface morphology by SEM to prove its decreased electrochemical property of the flexible supercapacitor after prolonged bending test.

The Study on Applicability of Semi-conductive Compound for Radioactive Source Tracing Dosimeter in NDT Field (비파괴 검사 분야의 방사성 동위원소 위치추적을 위한 반도체 화합물의 적용 가능성 연구)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Radiation safety management is being considered very important since radioactive isotopes such as Co-60 and Ir-192 are widely used in fields such as non-destructive test(NDT). In this study, the applicability of Mercury(II) Iodide($HgI_2$) source for tracing system was evaluated. To make sure the unit cell sensor's reliability, we evaluated the electrical properties of the sensor made with $HgI_2$, and then position dependence of the sensor was analyzed and compared with the dose distribution from the planning system. As a result of the evaluation, high reliability of the sensor was shown through the linearity of R-sq > 0.990 and reproducibility of CV < 0.015. In the position dependence evaluation, the maximum value was measured at the isocenter of the sensor and gradually decreased according to the distance. However, the dose distribution data from the planning system was turned out that has difference with that of the sensor up to 30%. This seems to come from the difference between single-point measuring based planning system and area measuring based sensor.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire (무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성)

  • Young Sil Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.456-462
    • /
    • 2023
  • An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.