• Title/Summary/Keyword: Conductive Film

Search Result 664, Processing Time 0.038 seconds

Thermal stability of polyaniline based conductive polymer blend (Polyaniline계 전도성 고분자의 열안정 특성)

  • 백운석;윤호규;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.215-218
    • /
    • 1998
  • The thermal stability of polyaniline-camphorsulfonic acid(PANI-CSA) film was studied as a function of temperature and time. A decrease in electrical conductivity of PANI-CSA film occurred when PANI-CSA film is subjected to temperature above 60$^{\circ}C$. From the result of thermogravimetry (TG), it was thought that the deterioration in electrical conductivity of PANI-CSA film was due to evaporation of water and residual solvent.

  • PDF

A Studies on the Characteristics of Reliability Test by Automotive Touch Screen Silver Pastes (자동차 터치스크린용 실버페이스트 종류에 따른 신뢰성 테스트 특성 연구)

  • Kim, Jung-won;Choi, Ung-se
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.205-208
    • /
    • 2016
  • In this paper, different types of touch screen silver pastes for bonding in conductive pattern formed over the ito film by bonding each sample of 5 was dried. The dry conditions, the oxidation of the ito film is a condition that does not occur. Reliability testing constant temp and humidity, cold-hot impact test is in progress. Each test will check the status of five sheets conductive pattern bonding. Conductive pattern bonding, after each 240,480,615 hours to check the status of silver pattern bonding. Reliability testing these through different silver pastes can see that the change in the adhesion and conductivity deterioration of the quality can be prevented, and reliability testing low temperature curing from the surface of silver pastes that can come as soon as the discoloration was unknown.

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness (유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구)

  • Lee, Han-Young;Jung, Kyung-Chae;Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.242-247
    • /
    • 2014
  • The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Low Temperature Processed Transparent Conductive Thin Films Based on Sol-Gel ZnO / Ag Nanowire (저온 형성 가능한 "졸겔 ZnO / 은 나노선" 복합 투명전도막)

  • Shin, Won-Jung;Kim, Bo Seok;Moon, Chan-Su;Cho, Won-Ki;Baik, Seung Jae
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.110-114
    • /
    • 2014
  • We propose a low temperature sol-gel ZnO/Ag nanowire composite thin film to fulfill low temperature and low cost requirements, which are essential criteria in future flexible electronic devices. In this proposed thin film, Ag nanowire plays the role of electrical conduction, and sol-gel ZnO provides a structural medium with a high visible transmittance. Low temperature restriction in the sol-gel fabrication process prevents sufficient oxidation of Zn acetate precursors, which were solved by a post-coating treatment with ultraviolet light irradiation. Composite thin film formation was performed by spin coating methods with a mixed precursor solution or in a sequential manner. We obtained an average visible transmittance larger than 85% and a sheet resistance smaller than $50{\Omega}/sq$. After optimization in a fabricated composite transparent conductive thin film with the thickness around 100 nm. Similar experimental demonstration in a flexible substrate (polyethyleneterephthalate) was successful, which implies a promising application opportunity of this technology.

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.

Effects of Nb and Ti Addition and Surface Treatments on the Electrical Conductivity of 316 Stainless Steel as Bipolar Plates for PEMFC (고분자전해필 연료전지 분리판용 316 스테인리스강의 전기전도도에 미치는 Nb, Ti 첨가 및 표면처리 효과)

  • Lee, Seok-Hyun;Kim, Jeong-Heon;Kim, Min-Chul;Chun, Dong-Hyun;Wee, Dang-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.324-324
    • /
    • 2006
  • Nb and Ti were added to 316 stainless steel, and then heat-treatments and surface treatments were performed on the 316 stainless steel and the Nb- and Ti-added alloys. All samples indicated enhanced electrical conductivity after surface treatments, whereas they showed low electrical conductivity before surface treatments due to the existence of non-conductive passive film on the alloy surface. In particular, the Hb- and Ti-added alloys showed remarkable enhancement of electrical conductivity compared to the original alloy, 316 stainless steel. Surface characterization revealed that small carbide particles formed on the alloy surface after surface treatments, while the alloys indicated flat surface structure before surface treatments. $Cr_{23}C_6$ mainly formed on the 316 stainless steel, and NbC and TiC mainly formed on the Nb- and Ti-added alloys, respectively. We attribute the enhanced electrical conductivity after surface treatments to the formation of these carbide particles, possibly acting as a means of electro-conductive channel through the passive film. Furthermore, NbC and TiC are supposed to be more effective carbides than $Cr_{23}C_6$ as electro-conductive channels of stainless steel

  • PDF

Fabrication and characteristics of vibration sensor using conductive ball (전도성 볼을 이용한 진동센서의 제작 및 특성)

  • Jang, Sung-Wook;Cho, Yong-Soo;Kong, Seong-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.374-380
    • /
    • 2005
  • Vibration sensors have a wide scope of applications in the field of monitoring systems that needs to perceive an undesirable physical vibration before a critical failure occurs in a system, and then costly unplanned repairs can be avoided. The conventional vibration sensors developed so far have many disadvantages, such as complex manufacturing process, bulkiness, high cost, less reliability and so on. This paper reports a simple-structured vibration sensor, which has been developed using a commercialized conductive ball and silicon bulk-micromachining technology. The sensor consists of a conductive ball placed in $600{\mu}m$-deep micromachined silicon groove, in which Au thin film has been patterned using a shadow mask technique. Prior to the formation of the Au thin film, the sharp convex corner was rounded for smooth meatl deposition on the non-planar surface at the edge of the groove. The measurement results of the fabricated vibration sensor demonstrate a stable response characteristic to low-frequency vibration range ($1{\sim}30{\;}Hz$).

Chip on Glass Interconnection using Lateral Thermosonic Bonding Technology (횡방향 열초음파 본딩 기법을 이용한 COG 접합)

  • Ha, Chang-Wan;Yun, Won-Soo;Park, Keum-Saeng;Kim, Kyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.7-12
    • /
    • 2010
  • In this paper, chip-on-glass(COG) interconnection with anisotropic conductive film(ACF) using lateral thermosonic bonding technology is considered. In general, thermo-compression bonding which is used in practice for flip-chip bonding suffers from the low productivity due to the long bonding time. It will be shown that the bonding time can be improved by using lateral thermosonic bonding in which lateral ultrasonic vibration together with thermo-compression is utilized. By measuring the internal temperature of ACF, the fast curing of ACF thanks to lateral ultrasonic vibration will be verified. Moreover, to prove the reliability of the lateral thermosonic bonding, observation of pressured mark by conductive particles, shear test, and water absorption test will be conducted.