• 제목/요약/키워드: Conductive

검색결과 2,712건 처리시간 0.025초

자수 도전사(傳導絲) 기반의 유아체온 센싱 시스템 설계 연구 (A Design of Infant's Body Temperature Sensing System Based on Embroidery Textile Conductive Wire)

  • 송하영;이강휘;이정환
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.862-867
    • /
    • 2016
  • In this study, the embroidery textile conductive wire of conductive yarn was designed into the wearable integrated clothing for sensing the infant's body temperature. To develop a high quality of the stable fiber-based textile conductive wire, firstly the five types of conductive yarns were twisted or covering polyester yarns and the coated conductive fiber with silver(Ag) or iron(Fe). As a result of comparative conductivity in conductive yarns of yarn processing, the 250 denier of conductive yarns with $0.74{\Omega}$/1~5cm were proposed and used for the integrated embroidery textile conductive wire for sensing. During experiments using the proposed embroidery textile conductive wire, measured resistance of thermistor according to the body temperature was correctly delivered to amplifier module, and showed feasible reliability of temperature sensing. As a wearable application, conductive yarns which takes forms of embroidery textile conductive wire would seems to be reliable as a conductive wire and could be replaced by the conductive metal wires.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

심박 모니터링을 위한 전도성 소재의 전도성 및 물성 비교 연구 (A Comparative Study on the Conductivity and Physical Properties of Conductive Materials for Heart Rate Monitoring)

  • 김지민;김종준
    • 패션비즈니스
    • /
    • 제22권4호
    • /
    • pp.118-129
    • /
    • 2018
  • The purpose of this study is to develop ECG electrode materials for the heart rate monitoring smart band, a smart device used for ECG and heart rate measurement. The purpose of the evaluation is to assess properties and conductivity of electrodes of the existing heart rate monitoring smart band, and to determine suitability through a representative conductive sample. Because level of thickness does not differ significantly from value of conductive specimen from thickness of the smart band, it can be used as a conductive electrode. Surface conductivity of conductive samples and smart bands, is expected to be available as electrodes except for conductive film. Also, since the knit have conductivity only in the metal processing layer, it is necessary to use electrodes on the part of the metal processing layer that is conductive when applying the knit. Tensile strength and electrical conductivity of the tensile were generally revealed to have a tendency. Thickness of the specimen that can be used as an electrode for the smart band is suitable for all samples, electrical resistance, conductive woven, conductive knit, and conductive cord. In the case of conductive cord, however, the electrode attached to the human body will not conform to the flat shape of the electrode attached to the human body. Therefore, the conductive woven and the conductive knit will be available as an electrode.

전도성 재료를 혼입한 모르타르의 발열특성에 관한 실험적 연구 (An Experimental Study on the Exothermic Properties of Cement Mortar Containing Conductive Materials)

  • 송동근;홍철호;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.131-132
    • /
    • 2014
  • In this study, an experiment was carried out using graphite, conductive nickel powder, copper bar, carbon fiber for evaluate the exothermic properties and heating reproducibility of the cement mortar containing conductive material. As a result, the conductive materials that interfere with heating reproducibility are present, and the optimal conductive materials exist in each input voltage.

  • PDF

셀룰로오스를 이용한 전도성 체이스트의 개발 (Novel Conductive Paste based on Cellulose Acetate Butyrate)

  • 김태현
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.171-177
    • /
    • 2007
  • 고분자를 바탕으로 한 전도성 페이스트는 전원과 기기를 연결하는 전도 통로를 제공하여 준다. 이러한 전도성 페이스트는 고분자 바인더와 전도성 금속의 두 부분으로 이루어져 있다. 본 연구에서는 낮은 점도와 우수한 금속 피막성을 가지는 셀룰로오스 아세테이트 부타이레이트를 바인더로 사용하여 새로운 전도성 페이스트를 개발하였다. 전도도 측정 결과 안정된 전도도를 보였을 뿐 아니라, 균일한 코팅성과 유연성을 나타내었다.

A Novel Flexible PCB Conductive Structure for Electrodynamic Bearings and Measurement in its Induced Voltage

  • Ding, Guoping;Sandtner, Jan;Bleuler, Hannes
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2001-2008
    • /
    • 2015
  • This paper proposes the concept of FlexPCB(flexible Printed Circuit Board) conductive structure for electrodynamic bearings. It has three main advantages: easy “printing” of considerably thin conductive wires, resulting in potential reduction in stray eddy currents; realization of specific conductive configurations with high precision to optimize the eddy current flowing; simplicity in being wound to cylinders or hollow cylinders of different diameters. To verify this new concept, the FlexPCB conductive structure was manufactured, an axial electrodynamic bearing test rig was built and the conductive structure's induced voltage was measured along the axial displacements from 0mm to 56mm at three rotating speeds. The finite element method was used to calcuatlate the flux density of electrodynamic bearing and induced voltage of the FlexPCB conductive structure. The experimental results are compared with the results from the FEM calculation. It is concluded that the measured and calculated induced voltages have consistency in the middle part of the bearing.

Direct Printing법에 의해 제작된 OTFT용 source & drain 전극용 전도성 페이스트 제조 (The Manufacture of Conductive paste for OTFT source & drain contacts Fabricated by Direct printing method)

  • 이미영;남수용;김성현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.384-385
    • /
    • 2006
  • We studied about conductive pastes of the source-drain contacts for OTFTs(organic thin-film transistors) fabricated by direct printing(screen printing) method. We used Ag and conductive carbon black powder as the conductive fillers of pastes. The conductive pastes were manufactured by various dispersing agents and dispersing conditions and source-drain contacts with $100{\mu}m$ of channel length were fabricated. We could obtain the OTFTs which exhibited different field-effect behaviors over a range of source-dram and gate voltages depending on a kind of conductive fillers used conductive pastes.

  • PDF

금속입자가 전도성 잉크의 전도도에 미치는 영향 (Effect of Metal Powders on the Conductivity of Conductive Inks)

  • 권두효;정태의;김남수;한국남
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.97-103
    • /
    • 2008
  • In this investigation, conductivity of conductive inks was measured. A particular attention has been given to the effect of metal powders with various conductivity on the overall conductivity of the bulk ink. The conductivity of various solutions simulating conductive inks consisting of copper and silver was measured and the results have been discussed in relation to various applications of conductive inks in practice. A conductivity model simulating systems consisting of various materials has been introduced and the results were discussed. Materials of good conductivity are adversely affected by mixing with materials of poor conductivity simply through serial connection. However, parallel connection has rather little effect on the overall conductivity. The practical implication of various mixtures of materials on conductive inks has been discussed.

슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가 (Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method)

  • 이병우;이충근;조하경;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.

High Temperature Reliability Study of Anisotropic Conductive Adhesive for Electronic Components

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.193-196
    • /
    • 2018
  • In this study, we investigated the reliability of anisotropic conductive paste (ACP) and anisotropic conductive films (ACF), which are anisotropic conductive adhesives, applied to automotive touch panels. Adhesive material is also important as a key factor in assembling the touch panel. In order to measure the resistance change of the parts in two kinds of high temperature test, the reliability of the two types of anisotropic conductive adhesives was compared and evaluated through the results of the resistance change. For 615 hours of reliability testing, the anisotropic conductive film exhibited a higher stability in a high temperature environment than the anisotropic conductive paste.