• 제목/요약/키워드: Conduction-Convection

검색결과 265건 처리시간 0.027초

좁은 수평 환형공간에서의 낮은 Prandtl 수 유체의 자연 대류 (Natural Convection of Low-Prandtl-Number Fluids in a Narrow Horizontal Annulus)

  • 유주식
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1784-1795
    • /
    • 1998
  • Natural convection of low Prandtl number fluids with $Pr{\leq}0.2$ in a narrow horizontal annulus is numerically investigated. For $Pr{\leq}0.2$, hydrodynamic instability induces oscillatory multicellular flows consisting of multiple like-rotating cells. For a fluid with $Pr{\approx}0$, the region in which instability of conduction regime first forms is near the vertical section of annulus, and the multiple cells are distributed uniformly in the lower and upper regions of annulus. As Pr increases, however, the cells are shifted upwards. The like-rotating cells drift downward, as time goes on, and the speed of travel increases with increase of Pr. For a fluid with Pr=0.1, a flow with period-4 solution is observed between chaotic states.

주기적인 온도를 갖는 두 수평 평판 사이에서 자연 대류에 대한 다중해 (Multiple Solutions for Natural Convection Between Two Horizontal Plates with Periodic Temperatures)

  • 유주식;김용진
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1440-1448
    • /
    • 2004
  • Multiple solutions in natural convection of air (Pr=0.7) between two horizontal walls with mean temperature difference and the same periodic nob-uniformities are investigated. An analytical solution is found for small Rayleigh number, and the general solution is investigated by using a numerical method. In the conduction-dominated regime, two upright cells are formed between two walls over one wave length. When the wave number is small, the flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The multicellular flows at high Rayleigh numbers consist of approximately square-shape cells. And several kinds of multiple flows classified by the number of cells are found.

상변화 물질을 사용한 축열조에서의 열전달 - 수직원관에서의 내향용융 실험 - (Heat Transfer in Heat Storage System with P.C.M. - Inward Melting in a Vertical Tube)

  • 손화승;황태인;이채문;최국광;임장순
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.53-61
    • /
    • 1989
  • In the present investigation, experiments on the melting of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin which is measured melting temperature of $42.5^{\circ}C$, latent heat of 37.5 cal/g, heat conductivity of $0.1505W/m^{\circ}C$. Experiments were performed both in the no-subcooling which is initiating it at melting temperature of phase change material, and in the subcooling which means to initiate it under melting temperature of phase change material, in order to compare and investigate the horizontal temperature history, vertical temperature history, ratio of melting and melted mass, figure of the melting front in the vertical tube. In the experimental results, heat transfer from tube wall to phase change material were due to conduction at early stage and due to natural convection with the passage of time, and then occurred melting downward from surface by volumetric expansion. Natural convection affects temperature distribution in the tube, ratio of melting and melted mass, figure of the melting front and then progress rapidly in case of nosubcooling compared to subcooling.

  • PDF

열 등가회로를 이용한 SPMSM 전동기의 온도 예측 (Prediction of temperature using equivalent thermal network in SPMSM)

  • 김도진;권순오;정재우;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.792-793
    • /
    • 2008
  • This paper deals with the temperature calculation using equivalent thermal network for surface mounted permanent magnet synchronous motor(SPMSM) under the steady-state condition. In the equivalent thermal network, heat sources are generated from copper loss and iron loss. Heat transfer consists of conduction, convection and radiation. However, radiation is neglected in this paper because its effect is much smaller than others. Although the heat transfer coefficient in conduction use material property, heat transfer coefficient in convection is difficult to measure due to the atmosphere and ambient condition. Temperatures of each region in SPMSM are measured by thermocouple in operating condition and the thermal resistances of convection are calculated by kirchhoff's current law(KCL) and experimental result. In order to verify the validation and reliability of the proposed equivalent thermal network, temperature which is calculated other load condition is compared with experimental results. Accordingly, temperatures of each region in other SPMSMs will be easily predicted by the proposed equivalent thermal network.

  • PDF

대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석 (Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

3차원 해석적 방법에 의한 사다리꼴 휜 해석 (Trapezoidal Fin Analysis by the 3-D Analytical Method)

  • 이성주;강형석
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.388-397
    • /
    • 2000
  • Comparison of the heat conduction into a trapezoidal fin and the heat loss from the fin by convection is made in this study Also, the ratio of heat loss from each surface to the total heat loss and the temperature distribution are analyzed using a 3-D analytical method. A trapezoidal fin whose tip height is half the root height is chosen as the model. The results show that the heat transfer rates from the tip and from both sides are comparable with each other as the non-dimensional width and length vary while the heat transfer rate from the bottom and top is dominant.

  • PDF

P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석 (A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF

상수 또는 변수의 대류 경계조건을 가지는 구의 과도열전도 손실에 대한 해석 (Analysis of Transient Conduction Heat Loss of Solid Sphere between Constant and Variable Free Convection)

  • 김명준;채규훈
    • 동력기계공학회지
    • /
    • 제14권4호
    • /
    • pp.17-22
    • /
    • 2010
  • 본 연구는 구의 과도 열전도에 의한 열손실을 계산하는 데 있어, 외부의 경계조건인 대류의 조건에 해당하는 상황을 상수 및 변수로 가정하였을 경우의 열전달문제를 해석한 것이다. 이 문제를 해결하기 위해 집중열용량법을 사용하고 있으며, 대류열전달계수의 값이 온도의 함수로 변한다고 가정하여 계산하였다. 계산을 수행한 결과 대류경계조건의 값을 상수로 가정한 경우가 열손실이 높이 평가된다는 것을 알았고, 이러한 경향을 상관식으로 정리하였다.

A Comparison between 3-D Analytical and Finite Difference Method for a Trapezoidal Profile Fin

  • 이성주;강형석
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.41-50
    • /
    • 2001
  • A comparison is made of the temperature distribution and heat loss from a trapezoidal profile fin using two different 3-dimensional methods. These two methods are analytical and finite difference methods. In the finite difference method 78 nodes are used for a fourth of the fin. A trapezoidal profile fin being the height of the fin tip is half of that of the fin base is chosen arbitrarily as the model. One of the results shows that the relative error in the total convection heat loss obtained by using 78 nodes in the finite difference method as compared to the heat conduction through the fin root obtained by analytic method seems to be good (i.e., -3.5%

  • PDF

돌출된 열원이 부착된 수직 채널내 복합열전달 (Conjugate Heat Transfer in a Vertical Channel with Protrunding Heat Source)

  • 김의광;백병준;조병수
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.741-751
    • /
    • 1996
  • The coupled conduction and convection heat transfer from the protruding heat source in a vertical channel is numerically investigated. Conjugate solution of the two-dimensional energy equation is obtained for the incompressible air flow over the rectangular block with local heat source. It was found that several recirculation zones and separation bubble near the block were related to Re and Gr. And the results show that fractions of the heat transfer through each of the block face, maximum temperature of the block and the relative effect of each parameter on the maximum temperature and heat transfer.