• Title/Summary/Keyword: Conducting film

Search Result 561, Processing Time 0.03 seconds

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate (유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2009
  • In this paper, ZnO:Al thin film was deposited on polyethylene terephthalate(PET) substrate by capacitively coupled r. f. magnetron sputtering method from a ZnO target mixed with 2wt[%] Al2O3 to investigate the possible application of ZnO:Al film as a transparent conducting electrode for film typed DSCs. The effect of substrate bias on the electrical properties and film structure were studied. The results showed that a positive bias applied to the substrate during sputtering contributed to an improvement of electrical properties of the film by attracting electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO:Al film on the substrate, resulting in significant variations in film structure and electrical properties. Electrical resistivity of the film decreases significantly as the positive bias increases up to +30[V] However, as the positive bias increases over +30[V], the resistivity decreases. The transmittance varies little as the substrate bias is increased from 0 to +60[V], and as r. f. powers increases from 160[W] to 240[W]. The film with electrical resistivity as low as $1.8{\times}10^{-3}[{\Omega}-cm]$ and optical transmittance of about 87.8[%] were obtained for 1,012[nm] thick film deposited with a substrate bias of +30[V].

Characterization of Electro-Polymerized Polyaniline Film on the Cold Rolled Sheet in the Oxalic acid and Sodium Molybdate Electrolyte (옥살산과 몰리브덴산나트륨 전해액에서 냉연강판에 전해중합된 폴리아닐린 피막의 특성)

  • Lim, Ki-Young;Yoon, Jeong-Mo;Ki, Joon-Seo;Jang, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.386-393
    • /
    • 2006
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as polyaniline. Polyaniline is a conductive polymer that is synthesized by oxidation polymerization, and the electrochemical and chemical polymerization are possible for the oxidation of aniline. Electrochemical oxidation polymerization produces a fine surface and although voltage control is more convenient, it require electrolytic cells, and elaborate thin film can be acquired with the polymerization. Polyaniline films were electro-polymerized on cold rolled sheets using the galvanostat mode in the oxalic acidaniline-sodium molybdate electrolyte. The structure and properties of polyaniline film were studied using Potentiostat/Galvanostat 263A, FE-SEM,, AFM, SST, Colorimetry. A high corrosion resistance of polyaniline film was observed with an increase of corrosion potential by $500{\sim}600$ mV for the substrate covered with polyaniline.

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

Electrical and optical properties of FTO transparent conducting oxide film by spray pyrolysis and its XPS analysis based on F/Sn ratio (분무열분해법에 의하여 제조한 FTO 투명전도막의 F/Sn 비율에 따른 전기, 광학적 특성과 XPS 분석)

  • Song, Chul-Kyu;Kim, Chang-Yeoul;Huh, Seung-Hun;Riut, Doh-Hyung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.376-381
    • /
    • 2007
  • Fluorine-doped tin oxide (FTO) thin film was coated on aluminosilicate glass at $450^{\circ}C$ by spray pyrolysis method. In the range of 0-2.7 molar ratio of F/Sn, the variations of electrical conductivity and visible light transmission were investigated. At the F/Sn ratio of 1.765, the film showed the lowest electrical resistivity value of $3.0{\times}10^{-4}{\Omega}\;cm$, the highest carrier concentration of $2.404{\times}10^{21}/cm^3$, and about $8\;cm^2/V{\cdot}sec$ of electronic mobility. The FTO film showed a preferred orientation of (200) plane parallel to the substrate. X-ray photoelectron spectroscopy analysis results indicated that the contents of $Sn^{4+}-O$ bonding are the highest at 1.765 of F/Sn molar ratio.