• Title/Summary/Keyword: Conducting film

Search Result 560, Processing Time 0.03 seconds

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement

  • Cho, Young-Seek;Franklin, Rhonda R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.237-240
    • /
    • 2012
  • A conducting polymer, poly 3-hexylthiophene (P3HT) is characterized with the metal-insulator-semiconductor (MIS) measurement method and the high frequency planar circuit method. From the MIS measurement method, the relative dielectric constant of the P3HT film is estimated to be 4.4. For the high frequency planar circuit method, a coplanar waveguide is fabricated on the P3HT film. When applying +20 V to the CPW on P3HT film, the P3HT film is in accumulation mode and becomes lossy. The CPW on P3HT film is 1.5 dB lossier than the CPW on $SiO_2$ film without P3HT film at 50 GHz.

Flexible, Transparent Thin-Film Transistors Fabricated by Ink-Jet Printing with Carbon Nanotube-Based Conducting Ink

  • Lee, Yeon-Ju;Lee, Woo-Suk;Jeong, Soo-Kyeong;Choi, Seok-Ju;Kim, Hye-Min;Chun, Jin-Young;Kim, Sung-Ho;Geckeler, Kurt E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.920-922
    • /
    • 2009
  • Flexible, transparent thin-film transistor with active layers composed of carbon nanotube-based conducting ink were fabricated on a plastic substrate by ink-jet printing. The properties of the formulated conducting ink containing carbon nanotubes, a conducting polymer, and additives were characterized and optimized. The conducting ink was applied to flexible thin-film transistors using ink-jet printing.

  • PDF

Effect of Conducting Carbon Layer on AC Thin Film EL Device

  • Park, Lee-Soon;Baek, Jeong-Ju;Park, Jin-Woo;Kim, Dae-Yong;Bae, Sung-Choon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.917-919
    • /
    • 2003
  • The effect of conducting carbon layer on the performance of AC thin film EL display was examined. It was found that incorporation of small amount of carbon nano-tube and conducting additive greatly improve the luminance of the inorganic EL compared to the one with only conducting carbon black.

  • PDF

Electrical property of polyvinylalcohol (Polyvinylalcohol의 전기적 특성)

  • 김현철;구할본
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • The electrical property of ultra thin PVA films(several hundreds .angs.-several .mu.m in thickness) formed by sphere bulb blowing technique, has been studied. The electrical conductivity of relatively thick films(>several thousands .angs.) has been very high and enhanced by the exposure either to high humidity of air or $NH_3$, which can be explained in terms of the role of ionic transport. The use of PVA films as NH$_{3}$ sensor is also proposed. In ultra thin PVA films less than 1500.angs., two conducting states ; high conducting and low conducting states, are observed. The nonlinear current-voltage characteristics in the low conducting state and the switching between these two states are also confirmed. These properties are discussed in terms of electronic conduction processes. The breakdown strength of the ultra thin PVA film is found to be very high(-30MV/cm), supporting the electron avalanche process in a thick polymer films.

  • PDF

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio (Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.289-293
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

A study on Stripping Voltammetric Determination of Ag(I) by Poly(3-methylthiophene) Conducting Polymer Film Electrode Containing 18-crown-6 (18-crown-6을 포함하는 poly(3-methylthiophene) 전도성 고분자 막전극에 의한 Ag(I)의 벗김 전압-전류법적 정량에 관한 연구)

  • Lee, Ihn Chong;Sohn, Jeong-In;Kim, Kuk Gin
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.181-186
    • /
    • 1994
  • Using poly(3-methylthiophene) conducting polymer film electrodes, feasiblity for Ag determination by stripping voltammetry has been studied. Ag ions accumulated by complexation with 18-crown-6, which are existing on the surface of the polymer film electrode, migrate inside of polymer film through potential scanning within limited potential range, and then are reduced and oxidized on the glassy carbon substrate. Therefore, the polymer film must have proper thickness and porosity for easy penetration of Ag ions. On the basis of these experimental results, $5.0{\times}10^{-6}M$ Ag(I) in aqueous solution could be determined.

  • PDF

Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film

  • Song, Young Il;Lee, Jung Woo;Kim, Tae Yoo;Jung, Hwan Jung;Jung, Yong Chae;Suh, Su Jeung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.255-258
    • /
    • 2013
  • Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers (RF 파워에 따라 스퍼터된 Al doped ZnO 박막의 구조적, 광학적, 전기적 특성)

  • Kim, Jong-Wook;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.