• Title/Summary/Keyword: Conducting Polymer (CP)

Search Result 12, Processing Time 0.023 seconds

Electrochemical Properties of Conducting Polymer for Supercapacitor (Supercapacitor용 도전성 고분자의 전기화학적 특성)

  • 강광우;김종욱;김명산;구할본;김형곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.323-327
    • /
    • 2001
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. The radius of semicircle of CP composite cell with polyaniline(PAn) composite electrode adding 30wt% acetylene black was small. The total resistance of supercapacitor cell mainly depended on internal resistance of he electrode. The discharge capacitance of supercapacitor cell with PAn composite electrode adding 30wt% acetylene black in 1st and 50th cycles was 27F/g and 31F/g at current density of 1mA/$\textrm{cm}^2$, respectively. Supercapacitor cell with PAn composite electrode adding 30wt% acetylene black showed a good cycliability. Supercapacitor cell of CP composite electrode with 1M LiClO$_4$/PC brings out god capacitor performance below 4V.

  • PDF

Artificial muscles: Non-Stoichiometry Nature, Sensing and Actuating Properties and Tactile Sensibility

  • Otero T.F.;Lopez-Cascales J.J.;Vazquez-Arenas G.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.118-122
    • /
    • 2005
  • Electro-chemo-mechanical devices or artificial muscles based on conducting polymers (CP) are presented as bilayers, CP/adhesive polymer, or as triple layers, CP/adhesive polymer/CP. Those soft and wet materials, working in aqueous solutions of a salt, mimic the composition of most organs from animals. Under electrochemical control, so working as new electrical machines, they produce continuous, reverse and elegant bending movements, mimicking those produce by animal muscles. By means of the current a perfect controls of the movement rate is attained giving soft and continuous movements. Muscles able to sense the chemical and mechanical conditions of work or muscle having tactile sense, as will be presented here, are being developed. All of them are founded on the non-stoichiometric nature of the soft and wet materials.

Electrical Propeties of Supercapacitor using Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 Supercapacitor의 전기적 특성)

  • 강광우;김명산;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.764-769
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Supercapactior cell of CP composite electrode with 1M LiClO$_4$/PC brings out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding 15Wt% SP270(PAnS15) and PT composite electrode adding 50%wt% SP270(PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/$\textrm{cm}^2$, respectively.

  • PDF

Electrical Properties of Supercapacitor with Polyaniline and Polythiophene (Polyaniline과 Polythiophene을 사용한 supercapaccitor의 전기적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.487-490
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Electrochemical capacitor(supercapacitor) cell of CP composite electrode with 1M LiClO$_4$PC bring out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding l5wt%SP270(PAnS15) and PT composite electrode adding 50wt%SP270 (PTS50) was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PTS50(+)/PAnS15(-) in 1st and 20th cycles was 38F/g and 28F/g at current density of 1mA/cm$^2$. Supercapacitor cell with PTS50(+)/PAnS15(-) showed good capacitance and stability with cycling.

  • PDF

Performance Characterization of Polyaniline Coated Electro-Active Paper Actuator (폴리아닐린이 코팅된 Electro-Active Paper 작동기 성능평가)

  • Ko, Hyun-U;Mun, Seong Cheol;Zhai, Lindong;Kim, Ki-Baek;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.658-664
    • /
    • 2013
  • Bending actuators composed of cellulose with an electrically conducting polymer (CP) are fabricated and their performance is characterized in the air. Two different counter ions, perchlorate and tetrafluoroborate are used as dopant ions in the polyaniline CP processing. CP-cellulose-CP trilayer and CP-cellulose bilayer samples are fabricated with different dopant ions, and their actuation performance is evaluated in terms of tip displacement, blocked force and electrical power consumption along with the humidity level and actuation frequency. The trilayer samples substantially enhanced the tip displacement compared to the bilayer ones. The actuation performance of the trilayer actuator is three times better than that of original cellulose electro-active paper (EAPap) actuator. The displacement and blocked force of CP-EAPap actuators are dependent on the humidity and frequency.

Electrochemical Properties of Conducting Polymer for Supercapacitor (Supercapacitor용 도전성 고분자의 전기화학적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.332-334
    • /
    • 2000
  • The purpose of this study is to research and develop conducting polymer(CP) composite electrode for supercapacitor. Supercapacitor cell of CP composite electrode with 1M LiClO$_4$/ PC bring out good capacitor performance below 4V. The radius of semicircle of CP composite cell with PAn composite electrode adding 30wt% acetylene black was absolutely small. The total resistance of supercapacitor cell mainly depended on internal resistance of the electrode. The discharge capacitance of supercapacitor cell with PAn composite electrode adding 30wt% acetylene black in 1st and 50th cycles was 27F/g and 31F/g at current density of 1mA/$\textrm{cm}^2$. Supercapacitor cell with PAn composite electrode adding 30wt% acetylene black performed a good cycliability.

  • PDF

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer (전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서)

  • Lee, Yong-Joo;Kim, Byung-Hyun;Lee, Hee-Jo;Hong, Yunseog;Lee, Seung Hwan;Choi, Hyang Hee;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

CP-EAPap biomimetic actuator fabrication and performance (CP-EAPap 생체모방 작동기의 제조 및 성능)

  • Li, Qubo;Kim, Jae-Hwan;Deshpande, S.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.360-363
    • /
    • 2005
  • Biomimetic actuators composed of cellophane with an electrically conducting polyaniline(PANI) film have been fabricated and tested in air ambience conditions doped with two different counter ions such as perchlorate (${ClO_4}^-$) and tetrafluoroborate (${BF_4}^-$). Fabrication of the trilayer CP//CELLOPHANE//CP substantially enhanced the tip displacement (13.2mm) compared to the small displacement (8.3mm) of the bilaye. CP//CELLOPHANE. The ion migration among layers is the main factor behind the expansion of cellophane, while the expansion/contraction of PANI are dependent on the redox reaction of the polymer. The displacement of the composite is dominated by the humidity content. This implies that the actuation principle is possibly due to the assistance of water existing.

  • PDF

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.