• Title/Summary/Keyword: Conditioning simulation

Search Result 999, Processing Time 0.026 seconds

Nonuniformity of Conditioning Density According to CMP Conditioning System Design Variables Using Artificial Neural Network (인공신경망을 활용한 CMP 컨디셔닝 시스템 설계 변수에 따른 컨디셔닝 밀도의 불균일도 분석)

  • Park, Byeonghun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.152-161
    • /
    • 2022
  • Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.

Dynamic Simulation of a Dedicated Outdoor Air-conditioning System (외기 전용 공조기의 동특성 시뮬레이션)

  • Kim, Jung-Min;Kim, Young-Il;Chung, Kwang-Seop;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

Control of the Absorption Air Conditioning System by Using Steepest Descent Method (최속 강하법을 이용한 흡수식 냉동공조시스템 제어)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Optimal Control Algorithm for the Dual Source Chiller Air Conditioning System (복합 열원 공조시스템의 최적 제어 알고리즘)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.881-888
    • /
    • 2004
  • Control algorithms for a dual source chiller air conditioning system were developed. These are control algorithms for the supply air temperature control, the supply header chilled water temperature control, the chiller chilled water temperature control, and the cooling tower water temperature control. These algorithms were analyzed by using a dynamic simulation program. Simulation results showed the energy savings and the satisfactory controls of an absorption and centrifugal chiller air conditioning system. Therefore, control algorithms developed for this study may effectively be used for the improved controls of the dual source chiller air conditioning system.

The Optimal Control of an Absorption Air Conditioning System by Using the Steepest Descent Method

  • Han Doyoung;Kim Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.123-130
    • /
    • 2004
  • Control algorithms for an absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. Simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

Development of program for the automotive air conditioning system analysis (자동차 에어컨 시스템 해석 프로그램의 개발)

  • 홍진원;최영기;이정희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-237
    • /
    • 1998
  • A numerical simulation has been carried out for the automotive air conditioning system. The purpose of this simulation is to present the methods for simulating car air conditioning components, systems and cool-down performance by computerized mathematical model and to analyze the performance of A/C system. In analyzing the heat exchanger(evaporator and condenser), the finite volume model which has a merit in predicting the temperature field in detail because it can consider partial variation of thermal property and heat transfer coefficient is used. In analyzing the compressor, the polytropic approach which regards the actual compression process as a reversible polytropic process is employed. In analyzing vehicle passenger compartment, the thermal network is employed to simulate the car cool down process. This A/C system program can be used for analyzing a component performance when a component is alternated or designed and for analyzing the engine cooling system when A/C system is operated.

  • PDF