This study was designed to identify the risk factors of unplanned readmission in a university hospital. The six-month discharge information from January to June, 2000 in a tertiary university hospital was used as a source of data through the medical record and hospital information system. To increase the effect of comparison. the data were collected by sampling 192 couples (384 patients) of unplanned readmission group through the matching by its disease groups, sex, and age. The accuracy of prediction for unplanned readmission was analyzed by constructing the predicted model of unplanned readmission through the logistic regression. The study results are as follows. The conditional logistic regression analysis was performed with nine variables at the significance level 0.05 through univariate analysis including residence, days after discharge, initial admission route, previous admission, transfer to special care unite, hospital stay days, medical care expenses, special cares, and laboratory and imaging services. As a result, the closer the patients live in Seoul and Gyeong-in area (Odds ratio=2.529, p=0.003), the shorter the days after discharge was (Odds ratio=0.600, p=0.000), and the more frequent admission rate was (Odds ratio=2.317, p=0.004), the more unplanned readmission was resulted. Also, the accuracy of prediction for data classification of this regression model showed $70.3\%$(032+83/306).
After introducing diagnosis equipment power failure prevention activities for distribution system have become more active. To do facility diagnosis and maintenance work more efficiently we need to evaluate reliability for the system and should determine the priority line with appropriate criteria. Thus, to calculate risk factor for the power distribution line that are composed of many component facilities its historical failure events for the last 5 years are collected and analysed. The failure statics show that more than 60% of various failures are related to environment factors randomly and about 20% of the failures are refer to the aging. As a strategic evaluation system reflecting these environmental influence is needed, a system on the basis of the probabilistic approach related statical variables in terms of failure rate and failure probability of electrical components is proposed. The figures for the evaluation are derived from the field failure DB. With adopting Bayesian rule we can calculate easily about conditional probability query. The proposed evaluation system is demonstrated with model system and the calculated indices representing the properties of the model line are discussed.
나이브베이즈분류기($na\ddot{i}ve$ Bayes classifier)는 학습, 적용 및 계산자원 이용의 측면에서 매우 효율적인 모델이다. 또한, 그 분류 성능 역시 다른 기법에 비해 크게 떨어지지 않음이 다양한 실험을 통해 보여져 왔다. 특히, 데이터를 생성한 실제 확률분포를 나이브베이즈분류기가 정확하게 표현할 수 있는 경우에는 최대의 효과를 볼 수 있다. 하지만, 실제 확률분포에 존재하는 조건부독립성(conditional independence)이 나이브베이즈분류기의 구조와 일치하지 않는 경우에는 성능이 하락할 수 있다. 보다 구체적으로, 각 자질변수(feature variable)들 사이에 확률적 의존관계(probabilistic dependency)가 존재하는 경우 성능 하락은 심화된다. 본 논문에서는 이러한 나이브베이즈분류기의 약점을 효율적으로 해결할 수 있는 자질변수의 통합기법을 제시한다. 자질변수의 통합은 각 변수들 사이의 관계를 명시적으로 표현해 주는 방법이며, 특히 상호정보량(mutual information)에 기반한 통합 변수의 선정이 성능 향상에 크게 기여함을 실험을 통해 보인다.
컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적인 정당성을 고려, 마코프연쇄와 메트로폴리스방법의 관계를 고찰하였으며, 특히 Mus-Okumoto와 Erlang(2)의 중첩모형에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하며 베이지안 계산과 예측 우도기준에 의 한 모형선택을 제안하고 Cox-Lewis에 의해 계시된 Thing method를 이용한 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과가 제시되었다.
Communications for Statistical Applications and Methods
/
제17권2호
/
pp.263-273
/
2010
시계열의 결측값은 미지의 모수 또는 확률변수로 취급할 수 있으며 이에 따른 최대가능도방법과 확률변수방법에 의해 결측치를 추정할수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 기존에는 ARMA모형만을 고려하였는데 이를 확장하여 공간시계열모형인 STAR모형에 적용하여 두 가지 추정방법을 이용해 결측값의 추정 정밀도를 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001~2009년 동안의 월별 Mumps 자료를 이용하여 두 가지 추정방법의 추정 정밀도와 예측정확도를 비교하였다.
Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.
Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
Communications for Statistical Applications and Methods
/
제31권5호
/
pp.535-556
/
2024
Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.
이 연구는 소비자 만족 관점에서 대학부설 평생교육원의 학습자를 대상으로 교육만족도를 파악하고자 서울, 경인, 충남지역 소재 4년제 대학부설 평생교육원의 성인학습자 1,067명을 대상으로 설문조사를 실시하였다. 교육만족도는 전반적인 만족도, 강사, 교육내용, 교육방법, 교육시설 및 환경, 담당직원서비스로 구성하고 연령별, 지역별, 성별 교육만족도, 교육만족도 변인 간 상관관계 분석, 교육만족도에 영향을 주는 변인들의 회귀분석을 실시하였다. 연구결과, 대학부설 평생교육원 교육만족도는 보통 수준 이상으로 나타났으며 강사 관련 만족도가 가장 높고 담당직원서비스 관련 만족도가 가장 낮게 나타났다. 교육만족도에 영향을 미치는 주요 변인은 강사, 교육내용, 시설 및 환경 순으로 나타났으며, 3개 변인의 설명력은 약 36%였다. 성인학습자를 위한 대학부설 평생교육원은 이들 영역에 대한 고려를 우선시 하여 경영해야 함을 의미한다.
뱀장어 생산단계 안전성조사 부적합여부에 영향을 미치는 특성변수를 베이지안 네트워크(BN) 모델을 적용하여 분석하였다. 2012년부터 2021년까지의 통합식품안전정보망(IFSIN)의 뱀장어 생산단계 안전성조사 데이터에 양식장의 HACCP 정보, 지리적 정보 및 용수환경 데이터를 연계하여 BN 모델을 수립하였다. 뱀장어의 부적합여부에 영향을 주는 특성변수로 양식장의 HACCP 인증여부, 양식장의 이전 5년간 검사대상 유해물질의 검출여부, 해당 양식장의 이전 5년간 부적합적발이력, 사용되는 용수환경의 적정성이 제안되었으며, 이때 용수환경의 적정성은 총대장균군과 총유기탄소량으로부터 산출되었다. 뱀장어 부적합이 발생할 확률이 가장 높은 경우는 지난 5년간 검사대상 유해물질의 검출이력이 있으면서 동시에 부적합 적발 이력이 있는 HACCP 인증을 받지 않은 양식장으로서, 용수환경도 총대장균군 또는 총유기탄소가 높아 오염이 의심되는 용수를 사용하는 경우로 이때 부적합이 발생할 확률은 24.5%로 뱀장어 생산단계 안전성 조사 시 부적합률인 0.26%의 94배 높았다. 2022년 1월부터 8월까지 뱀장어 양식장 안전성조사 결과를 시험용 데이터세트(6,785건 중 부적합 15건)로 하여 BN 모델의 적정성을 검토하였다. 영향강도가 높았던 설명변수인 HACCP, 검출이력, 부적합이력으로 구성한 BN 모델을 시험용 데이터세트에 적용한 결과 부적합일 확률이 15.8%로 시험용데이터의 부적합률인 0.22%의 약 71.4배 개선할 수 있었다. 그러나 이 모델의 재현율은 0.2에 머물렀는데, 이는 특히 부적합항목인 유해물질의 기준·규격이 신설되어 해당 양식장에서 검사기록이 없는 경우와, 매우 드물게 발생하여 10년 동안 검출이력이 없어 학습데이터세트에는 없는 경우이었다. 베이지안 네트워크를 적용하여 부적합확률이 높은 생산단계 안전성 조사대상을 선정하게 되면 설명변수별로 시나리오에 따라 부적합확률을 설명가능하게 되어 다른 머신러닝 알고리즘을 적용하는 경우 지적되어온 설명불가능이라는 문제점을 해소할 수 있으며, 향후 안전성조사 데이터 축적 시 용이하게 모델 업데이트가 가능하며 이를 통해 모델의 예측성능개선도 기대할 수 있다는 장점이 있다.
본 연구에서는 현대 재무적 측면에서 이론적 혹은 실무적으로 주요 이슈가 되고 있는 국내 자본시장에서의 재벌소속 계열기업들의 성장성관련 결정요인들에 대한 분석을 수행하였다. 2가지의 가설들이 실증적인 방법론에 의하여 검정되었는 바, 첫번째 가설관련 동 재벌기업들의 국제금융위기 이후의 표본기간 동안, 성장률에 대한 재무적 결정요인들을 동적패널분석과 정적패널분석의 방법론을 응용하여 다음과 같이 규명하였다. 즉, 장부가 기준의 성장률에 영향을 주는 요인들은 부채비율, 전 기간의 성장률, 기업규모, 그리고 외국인지분율 등이었으며, 이와 더불어 시장가 기준의 성장률에 대한 분석도 수반되었다, 두번째 가설은 조건부 분위회귀모형을 응용하여 4개의 구간별로 각 성장률관련 통제변수들에 대한 영향력을 분석하였으며, 그 결과로서 총자산수익률, 유가증권시장 유형, 2010년과 2011년의 거시경제 더미변수들, 그리고 산업더미들 중 화학업종과 유통업종의 변수들이 통계적으로 유의한 특징을 나타내었다. 국내 자본시장에서 상대적으로 높은 비중을 차지하고 있는 재벌기업들의 재무적 측면에서의 상호 비교관점을 기준으로, 금융위기 이후 현재까지 지속, 심화되고 있는 주요 재무지표들의 소수 재벌기업들 중심으로의 분포상 편중 가능성을 연구결과의 활용을 통하여 재균형 혹은 개선시킬 수 있다는 점등이 본 연구의 기여점이라고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.