• Title/Summary/Keyword: Conditional generation model

Search Result 38, Processing Time 0.021 seconds

Application of Deep Learning to Solar Data: 3. Generation of Solar images from Galileo sunspot drawings

  • Lee, Harim;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyunjin;Kim, Taeyoung;Shin, Gyungin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2019
  • We develop an image-to-image translation model, which is a popular deep learning method based on conditional Generative Adversarial Networks (cGANs), to generate solar magnetograms and EUV images from sunspot drawings. For this, we train the model using pairs of sunspot drawings from Mount Wilson Observatory (MWO) and their corresponding SDO/HMI magnetograms and SDO/AIA EUV images (512 by 512) from January 2012 to September 2014. We test the model by comparing pairs of actual SDO images (magnetogram and EUV images) and the corresponding AI-generated ones from October to December in 2014. Our results show that bipolar structures and coronal loop structures of AI-generated images are consistent with those of the original ones. We find that their unsigned magnetic fluxes well correlate with those of the original ones with a good correlation coefficient of 0.86. We also obtain pixel-to-pixel correlations EUV images and AI-generated ones. The average correlations of 92 test samples for several SDO lines are very good: 0.88 for AIA 211, 0.87 for AIA 1600 and 0.93 for AIA 1700. These facts imply that AI-generated EUV images quite similar to AIA ones. Applying this model to the Galileo sunspot drawings in 1612, we generate HMI-like magnetograms and AIA-like EUV images of the sunspots. This application will be used to generate solar images using historical sunspot drawings.

  • PDF

Application of Deep Learning to Solar Data: 2. Generation of Solar UV & EUV images from magnetograms

  • Park, Eunsu;Moon, Yong-Jae;Lee, Harim;Lim, Daye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2019
  • In this study, we apply conditional Generative Adversarial Network, which is one of the deep learning method, to the image-to-image translation from solar magentograms to solar UV and EUV images. For this, we train a model using pairs of SDO/AIA 9 wavelength UV and EUV images and their corresponding SDO/HMI line-of-sight magnetograms from 2011 to 2017 except August and September each year. We evaluate the model by comparing pairs of SDO/AIA images and corresponding generated ones in August and September. Our results from this study are as follows. First, we successfully generate SDO/AIA like solar UV and EUV images from SDO/HMI magnetograms. Second, our model has pixel-to-pixel correlation coefficients (CC) higher than 0.8 except 171. Third, our model slightly underestimates the pixel values in the view of Relative Error (RE), but the values are quite small. Fourth, considering CC and RE together, 1600 and 1700 photospheric UV line images, which have quite similar structures to the corresponding magnetogram, have the best results compared to other lines. This methodology can be applicable to many scientific fields that use several different filter images.

  • PDF

Gene Targeting Mouse Genetic Models for Cleft Lip and Palate (구순구개열 발생의 분자유전학 연구를 위한 유전자 표적/적중 생쥐모델의 이용)

  • Baek, Jin-A
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.11 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • Cleft lip and/or palate are common birth defects in humans and the causes including multiple genetic and environmental factors are complex. Combinations of genetic, biochemical, and embryological approaches in the laboratory mice are used to investigate the molecular mechanisms underlying normal craniofacial development and the congenital craniofacial malformations including cleft lip and/or palate. Both forward and reverse genetic approaches are used. The forward genetic approach involves identification of causative genes and molecular pathways disrupted by uncharacterized mutations that cause craniofacial malformations including cleft lip and/or cleft palate. The reverse genetic approach involves generation and analyses of mice carrying null or conditional mutations using the Cre-loxP mediated gene targeting techniques.

  • PDF

Generation of global coronal field extrapolation from frontside and AI-generated farside magnetograms

  • Jeong, Hyunjin;Moon, Yong-Jae;Park, Eunsu;Lee, Harim;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • Global map of solar surface magnetic field, such as the synoptic map or daily synchronic frame, does not tell us real-time information about the far side of the Sun. A deep-learning technique based on Conditional Generative Adversarial Network (cGAN) is used to generate farside magnetograms from EUVI $304{\AA}$ of STEREO spacecrafts by training SDO spacecraft's data pairs of HMI and AIA $304{\AA}$. Farside(or backside) data of daily synchronic frames are replaced by the Ai-generated magnetograms. The new type of data is used to calculate the Potential Field Source Surface (PFSS) model. We compare the results of the global field with observations as well as those of the conventional method. We will discuss advantage and disadvantage of the new method and future works.

  • PDF

Frontal Face Generation Algorithm from Multi-view Images Based on Generative Adversarial Network

  • Heo, Young- Jin;Kim, Byung-Gyu;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • In a face, there is much information of person's identity. Because of this property, various tasks such as expression recognition, identity recognition and deepfake have been actively conducted. Most of them use the exact frontal view of the given face. However, various directions of the face can be observed rather than the exact frontal image in real situation. The profile (side view) lacks information when comparing with the frontal view image. Therefore, if we can generate the frontal face from other directions, we can obtain more information on the given face. In this paper, we propose a combined style model based the conditional generative adversarial network (cGAN) for generating the frontal face from multi-view images that consist of characteristics that not only includes the style around the face (hair and beard) but also detailed areas (eye, nose, and mouth).

Hepatitis C Stage Classification with hybridization of GA and Chi2 Feature Selection

  • Umar, Rukayya;Adeshina, Steve;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2022
  • In metaheuristic algorithms such as Genetic Algorithm (GA), initial population has a significant impact as it affects the time such algorithm takes to obtain an optimal solution to the given problem. In addition, it may influence the quality of the solution obtained. In the machine learning field, feature selection is an important process to attaining a good performance model; Genetic algorithm has been utilized for this purpose by scientists. However, the characteristics of Genetic algorithm, namely random initial population generation from a vector of feature elements, may influence solution and execution time. In this paper, the use of a statistical algorithm has been introduced (Chi2) for feature relevant checks where p-values of conditional independence were considered. Features with low p-values were discarded and subject relevant subset of features to Genetic Algorithm. This is to gain a level of certainty of the fitness of features randomly selected. An ensembled-based learning model for Hepatitis has been developed for Hepatitis C stage classification. 1385 samples were used using Egyptian-dataset obtained from UCI repository. The comparative evaluation confirms decreased in execution time and an increase in model performance accuracy from 56% to 63%.

Efficient Production of loxP Knock-in Mouse using CRISPR/Cas9 System

  • Jung, Sundo
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2020
  • Of the various types of mice used for genome editing, conditional knock-out (cKO) mice serve as an important model for studying the function of genes. cKO mice can be produced using loxP knock-in (KI) mice in which loxP sequences (34 bp) are inserted on both sides of a specific region in the target gene. These mice can be used as KO mice that do not express a gene at a desired time or under a desired condition by cross-breeding with various Cre Tg mice. Genome editing has been recently made easy by the use of third-generation gene scissors, the CRISPR-Cas9 system. However, very few laboratories can produce mice for genome editing. Here we present a more efficient method for producing loxP KI mice. This method involves the use of an HDR vector as the target vector and ssODN as the donor DNA in order to induce homologous recombination for producing loxP KI mice. On injecting 20 ng/µL of ssODN, it was observed that the target exon was deleted or loxP was inserted on only one side. However, on injecting 10 ng/µL of the target HDR vector, the insertion of loxP was observed on both sides of the target region. In the first PCR, seven mice were identified to be loxP KI mice. The accuracy of their gene sequences was confirmed through Sanger sequencing. It is expected that the loxP KI mice produced in this study will serve as an important tool for identifying the function of the target gene.

Enhanced ACGAN based on Progressive Step Training and Weight Transfer

  • Jinmo Byeon;Inshil Doh;Dana Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.11-20
    • /
    • 2024
  • Among the generative models in Artificial Intelligence (AI), especially Generative Adversarial Network (GAN) has been successful in various applications such as image processing, density estimation, and style transfer. While the GAN models including Conditional GAN (CGAN), CycleGAN, BigGAN, have been extended and improved, researchers face challenges in real-world applications in specific domains such as disaster simulation, healthcare, and urban planning due to data scarcity and unstable learning causing Image distortion. This paper proposes a new progressive learning methodology called Progressive Step Training (PST) based on the Auxiliary Classifier GAN (ACGAN) that discriminates class labels, leveraging the progressive learning approach of the Progressive Growing of GAN (PGGAN). The PST model achieves 70.82% faster stabilization, 51.3% lower standard deviation, stable convergence of loss values in the later high resolution stages, and a 94.6% faster loss reduction compared to conventional methods.

Development of a Deep Learning-based Long-term PredictionGenerative Model of Wind and Sea Conditions for Offshore Wind Farm Maintenance Optimization (해상풍력단지 유지보수 최적화 활용을 위한 풍황 및 해황 장기예측 딥러닝 생성모델 개발)

  • Sang-Hoon Lee;Dae-Ho Kim;Hyuk-Jin Choi;Young-Jin Oh;Seong-Bin Mun
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 2022
  • In this paper, we propose a time-series generation methodology using a generative adversarial network (GAN) for long-term prediction of wind and sea conditions, which are information necessary for operations and maintenance (O&M) planning and optimal plans for offshore wind farms. It is a "Conditional TimeGAN" that is able to control time-series data with monthly conditions while maintaining a time dependency between time-series. For the generated time-series data, the similarity of the statistical distribution by direction was confirmed through wave and wind rose diagram visualization. It was also found that the statistical distribution and feature correlation between the real data and the generated time-series data was similar through PCA, t-SNE, and heat map visualization algorithms. The proposed time-series generation methodology can be applied to monthly or annual marine weather prediction including probabilistic correlations between various features (wind speed, wind direction, wave height, wave direction, wave period and their time-series characteristics). It is expected that it will be able to provide an optimal plan for the maintenance and optimization of offshore wind farms based on more accurate long-term predictions of sea and wind conditions by using the proposed model.

Generation of He I 1083 nm Images from SDO/AIA 19.3 and 30.4 nm Images by Deep Learning

  • Son, Jihyeon;Cha, Junghun;Moon, Yong-Jae;Lee, Harim;Park, Eunsu;Shin, Gyungin;Jeong, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • In this study, we generate He I 1083 nm images from Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images using a novel deep learning method (pix2pixHD) based on conditional Generative Adversarial Networks (cGAN). He I 1083 nm images from National Solar Observatory (NSO)/Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used as target data. We make three models: single input SDO/AIA 19.3 nm image for Model I, single input 30.4 nm image for Model II, and double input (19.3 and 30.4 nm) images for Model III. We use data from 2010 October to 2015 July except for June and December for training and the remaining one for test. Major results of our study are as follows. First, the models successfully generate He I 1083 nm images with high correlations. Second, the model with two input images shows better results than those with one input image in terms of metrics such as correlation coefficient (CC) and root mean squared error (RMSE). CC and RMSE between real and AI-generated ones for the model III with 4 by 4 binnings are 0.84 and 11.80, respectively. Third, AI-generated images show well observational features such as active regions, filaments, and coronal holes. This work is meaningful in that our model can produce He I 1083 nm images with higher cadence without data gaps, which would be useful for studying the time evolution of chromosphere and coronal holes.

  • PDF