• Title/Summary/Keyword: Conditional distribution

Search Result 295, Processing Time 0.028 seconds

Distribution Business Model and Protecting Management System of Contents for IPTV (IPTV를 위한 콘텐츠의 유통 비즈니스 모델 및 보호관리)

  • Ryu, Jee-Woong;Bang, Jin-Suk;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.845-850
    • /
    • 2011
  • In this paper, we proposed the digital contents distribution business model for the operation of integration between heterogeneous systems in order to use IPTV. Also, we designed and implemented the protection management system through this distribution business model. This proposed model maintains interoperability between the heterogeneous systems, creates rights protection document based on REL, and provides the new version of packaged digital contents to itself by packaging the digital contents. Overall, it ultimately offers an interoperable environment. Moreover, since we pre-defines the relations among REL data based on MPEG-21 standard, which creates the newly packaged digital contents, it is easy to edit data. We can expect to save expenses of digital contents distribution and rights protection technology. Additionally, we can further improve security by encapsulating the security technology of CAS and DRM system.

Articulated Human Body Tracking Using Belief Propagation with Disparity Map (신뢰 전파와 디스패리티 맵을 사용한 다관절체 사람 추적)

  • Yoon, Kwang-Jin;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • This paper suggests an efficient method which tracks articulated human body modeled with markov network using disparity map derived from stereo images. The conventional methods which only use color information to calculate likelihood for energy function tend to fail when background has same colors with objects or appearances of object are changed during the movement. In this paper, we present a method evaluating likelihood with both disparity information and color information to find human body parts. Since the human body part are cylinder projected to rectangles in 2D image plane, we use the properties of distribution of disparity of those rectangles that do not have discontinuous distribution. In addition to that we suggest a conditional-messages-update that is able to reduce unnecessary message update of belief propagation. Since the message update has comprised over 80% of the whole computation in belief propagation, the conditional-message-update yields 9~45% of improvements of computational time. Furthermore, we also propose an another speed up method called three dimensional dynamic models assumed the body motion is continuous. The experiment results show that the proposed method reduces the computational time as well as it increases tracking accuracy.

A Key Management Scheme without Re-encryption for Home-domain Contents Distribution in Open IPTV Environments (Open IPTV 환경에서 재암호화 과정 없는 댁내 컨텐츠 분배를 위한 키관리 기법)

  • Jung, Seo-Hyun;Roh, Hyo-Sun;Lee, Hyun-Woo;Yi, Jeong-Hyun;Jung, Sou-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.57-66
    • /
    • 2010
  • Due to the advancement of IPTV technologies, open IPTV services are a step closer to becoming reality. In such service environment, users are able to enjoy IPTV services using a variety of devices available at their home domain. However, it is impossible to get such flexible services at their convenience unless each of devices is individually connected to Set-Top-Box (STB) because of Conditional Access System (CAS) or service providers otherwise allow STB to freely distribute decoded contents to every user devices attached to STB. In this paper, we propose a key management scheme for securely distributing contents from STB to multiple user devices at home domain. The proposed scheme also makes the service providers be able to control the access rights to each of user devices without installing individual STBs. It is achieved by computationally dividing a private key of RSA signature scheme into three parts and thus makes possible to distribute the contents scrambled through a underlying CAS mechanism without re-encrypting them that the existing scheme should employ. It improves significantly computation and communication complexities, maintaining it as secure as the existing schemes. Additionally, it prevents misbehaving users from illegally distributing the contents from STB to their devices available at home domain.

Influence of Joint Distribution of Wave Heights and Periods on Reliability Analysis of Wave Run-up (처오름의 신뢰성 해석에 대한 파고_주기결합분포의 영향)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.178-187
    • /
    • 2005
  • A reliability analysis model f3r studying the influence of joint distribution of wave heights and periods on wave un-up is presented in this paper. From the definition of failure mode related to wave run-up, a reliability function may be formulated which can be considered uncertainties of water level. In particular, the reliability analysis model can be directly taken into account statistical properties and distributions of wave periods by considering wave period in the reliability function to be a random variable. Also, variations of wave height distribution conditioned to mean wave periods can be taken into account correctly. By comparison of results of additional reliability analysis using extreme distributions with those resulted from joint distribution of wave height and periods, it is found that probabilities of failure evaluated by the latter is larger than those by the former. Although the freeboard of sloped-breakwater structures can be determined by extreme distribution based on the long-term measurements, it may be necessary to investigate additionally into wave run-up by using the present reliability analysis model formulated to consider joint distribution of a single storm event. In addition, it may be found that the effect of spectral bandwidth parameter on reliability index may be little, but the effect of wave height distribution conditioned to mean wave periods is straightforward. Therefore, it may be confirmed that effects of wave periods on the probability of failure of wave run-up may be taken into account through the conditional distribution of wave heights. Finally, the probabilities of failure with respect to freeboard of sloped-breakwater structures can be estimated by which the rational determination of crest level of sloped-breakwater structures may be possible.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

CTE with weighted portfolios (가중 포트폴리오에서의 CTE)

  • Hong, Chong Sun;Shin, Dong Sik;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.119-130
    • /
    • 2017
  • In many literatures on VaR and CTE for multivariate distribution, these are estimated by using transformed univariate distribution with a specific ratio of many kinds of portfolios. Even though there are lots of works to define quantiles for multivariate distributions, there does not exist a quantile uniquely. Hence, it is not easy to define the VaR and CTE. In this paper, we propose the weighted CTE vectors corresponding to various ratio combinations of many kinds of portfolios by extending the researches on the alternative VaR and integrated multivariate CTE based on multivariate quantiles. We extend relation equations about univariate CTEs to multivariate CTE vectors and discuss their characteristics. The proposed weighted CTEs are explored with some data from multivariate normal distribution and illustrative examples.

Local Uncertainty of the Depth to Weathered Soil at Incheon Songdo New City (인천송도신도시 풍화토층 출현심도의 국부적 불확실성)

  • Kim, Dong-Hee;Ko, Sung-Kwon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.5-16
    • /
    • 2012
  • Since geologic data are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction. In this paper, the assessment of the local uncertainty of prediction for the depth to weathered soil was performed by using the indicator kriging. A conditional cumulative distribution function (ccdf) was first modeled, and then E-type estimate was computed for the spatial distribution of the depth to the weathered soil. Also, optimal estimate of spatial distribution for the depth to weathered soil was determined by using ccdf and loss function. The design procedure and method considering the minimum expected loss presented in this paper can be used in the decision-making process for geotechnical engineering design.

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Dependency-based Framework of Combining Multiple Experts for Recognizing Unconstrained Handwritten Numerals (무제약 필기 숫자를 인식하기 위한 다수 인식기를 결합하는 의존관계 기반의 프레임워크)

  • Kang, Hee-Joong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.855-863
    • /
    • 2000
  • Although Behavior-Knowledge Space (BKS) method, one of well known decision combination methods, does not need any assumptions in combining the multiple experts, it should theoretically build exponential storage spaces for storing and managing jointly observed K decisions from K experts. That is, combining K experts needs a (K+1)st-order probability distribution. However, it is well known that the distribution becomes unmanageable in storing and estimating, even for a small K. In order to overcome such weakness, it has been studied to decompose a probability distribution into a number of component distributions and to approximate the distribution with a product of the component distributions. One of such previous works is to apply a conditional independence assumption to the distribution. Another work is to approximate the distribution with a product of only first-order tree dependencies or second-order distributions as shown in [1]. In this paper, higher order dependency than the first-order is considered in approximating the distribution and a dependency-based framework is proposed to optimally approximate the (K+1)st-order probability distribution with a product set of dth-order dependencies where ($1{\le}d{\le}K$), and to combine multiple experts based on the product set using the Bayesian formalism. This framework was experimented and evaluated with a standardized CENPARMI data base.

  • PDF

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.