• Title/Summary/Keyword: Conditional Merge

Search Result 2, Processing Time 0.016 seconds

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.