• Title/Summary/Keyword: Condition-based Maintenance (CBM)

Search Result 49, Processing Time 0.032 seconds

상태기반정비 요구도 국방규격 반영에 관한 연구 (A Study on the Reflection of Condition-Based Maintenance Requirement in the Defense Specification)

  • 손민정;김영길
    • 품질경영학회지
    • /
    • 제49권3호
    • /
    • pp.269-279
    • /
    • 2021
  • Purpose: The purpose of this study was to suggest weapon system specifications for requirements of Condition-Based Maintenance(CBM/CBM+). Methods: The military documents and case studies with regard to condition-based maintenance were reviewed. Representative Korea defense specifications of weapon system such as an aircraft, a C4ISR etc. were analyzed and investigated the level of requirement for maintainability was. Results: Condition-based maintenance was defined in both U.S. instruction and Korean directive. While deparment of defense(U.S.) provide a guidebook for CBM+, detailed instruction was not sufficient for Korean. Ministry of national defense(ROK) define the CBM+ by means of IPS element which should be developed along with the system development. The maintainability was barely included in Korean defense specifications, except for BIT(Built-in test) function. As a first step for defining the condition-based maintenance requirement in defense specification, this study suggests a standard form for data needed to acquire according to types of system, fault, failure, and so on. Conclusion: The empirical researches on CMB/CBM+ with domestic weapon systems are not enough, and a logic which leads the maintenance strategy to CMB/CBM+ is not solved. Through technical researches and institutional improvements including this study, we hope that condition-based maintenance would be fully established in the Korean defense field.

스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템 (A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory)

  • 조재형;이재오
    • KNOM Review
    • /
    • 제24권1호
    • /
    • pp.13-19
    • /
    • 2021
  • 최근 산업 분야에서는 공장 자동화 뿐만 아니라 장애 진단/예측을 통해 고장/사고를 사전에 방지하여 생산량을 극대화하기 위한 연구가 진행되고 있으며, 이를 구성하기 위해 많은 양의 데이터 축적을 위한 클라우드 기술, 데이터 처리를 위한 빅 데이터 기술, 그리고 데이터 분석을 쉽게 진행하기 위한 AI(Artificial Intelligence)기술이 도입되고 있다. 또한 최근에는 장애 진단/예측의 발전으로 인해 설비 유지보수(PM: Productive Maintenance) 방식도 정기적으로 설비를 유지보수 하는 방식인 TBM(Time Based Maintenance)에서 설비 상태에 따라 유지보수 하는 방식인 CBM(Condition Based Maintenance)을 조합하는 방식으로 발전하고 있다. CBM 기반 유지보수를 수행하기 위하여 설비의 상태(condition)의 정의와 분석이 필요하다. 따라서 본 논문에서는 머신 러닝(Machine Learning) 기반의 장애 진단을 위한 시스템 및 데이터 모델(Data Model)을 제안하며, 이를 기반으로 장애를 사전 예측한 사례를 제시하고자 한다.

수력발전소 정비변수 및 회전체 통합관리 시스템 개발 (Development of an Integrated Management System for Maintenance Parameters and Rotary Machine of Hydro-power Plant)

  • 신성환;박진호;윤두병
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.263-269
    • /
    • 2012
  • Condition-based maintenance (CBM) has been used as a useful concept for optimizing maintenance plan and decreasing maintenance cost in several kinds of plant sites. This study introduced an example that developed an integrated management system for maintenance parameters and hydraulic turbine of hydro-power plant in order to improve its maintenance system as applying CBM techinique. The integrated management system consists of three parts. One is a hardware part including PDA inspection system and several kind of precision measuring instruments. Another is a vibration monitoring system on hydraulic turbine. The other is a software part that takes charge of making hierarchy tree of maintenance parameters and their inspection route, managing accumulated database, assessing health condition of components, and supporting interface with other enterprise management system. The system has been installed at Chuncheon Hydro-power plant for test and demonstration. It is expected that the system can contribute database construction for diagnostics and prognostics on facility health condition and systematic accumulation of know-how on operation and maintenance of plant.

  • PDF

수력발전소 정비변수 및 회전체 통합관리시스템 개발 (Development of an Integrated Management System for Maintenance Parameters and Rotary Machine of Hydro-power Plant)

  • 신성환;박진호;윤두병;손기성
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.574-581
    • /
    • 2012
  • Condition-based maintenance(CBM) has been used as a useful concept for optimizing maintenance plan and decreasing maintenance cost in several kinds of plant sites. This study introduced an example that developed an integrated management system for maintenance parameters and hydraulic turbine of hydro-power plant in order to improve its maintenance strategy as applying CBM techinique. The integrated management system consists of three parts. One is a hardware part including PDA inspection system and several kind of precision measuring instruments. Another is a vibration monitoring system on hydraulic turbine. The other is a software part that takes charge of making hierarchy tree of maintenance parameters and their inspection route, managing accumulated database, assessing health condition of components, and supporting interface with other enterprise management system. The system has been installed at Chuncheon hydro-power plant for test and demonstration. It is expected that the system can contribute database construction for diagnostics and prognostics on facility health condition and systematic accumulation of know-how on operation and maintenance of plant.

CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구 (A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage)

  • 신백천;허장욱
    • 시스템엔지니어링학술지
    • /
    • 제18권1호
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

무기체계 CBM+ 적용 및 확대를 위한 무기체계 센서데이터 수집용 메타데이터 스키마 연구 (A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems)

  • 김진영;심형섭;손지성;황윤영
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.161-169
    • /
    • 2023
  • 4차산업혁명으로 인해 인공지능(AI), 빅데이터(Big Data), 클라우드(Cloud) 등 다양한 기술들의 혁신이 가속화되고 있고 데이터가 중요한 자산으로 여겨지고 있다. 이러한 기술의 발전에 따라 국방과학기술분야에서도 기술 혁신을 창출하기 위한 다양한 노력들이 진행되고 있다. 국내에서도 정부는 2023년 3월에 첨단과학기술 강군 육성을 위한 5대 중점과 16개 과제로 구성된 「국방혁신 4.0 기본계획」을 발표했다. 이 계획에는 인사·군수 분야에서도 빅데이터를 구축하는 내용에 무기체계 운용성·가용성 향상과 국방비 절감을 위한 상태기반정비체계(CBM+) 구축에 관한 내용이 포함되어 있다. 상태기반정비(Condition Based Maintenance, CBM)는 무기체계의 신뢰도 확보와 가용성 증대를 목표로 하며 장비의 상태정보 변화를 분석하여 고장과 결함의 징후로 식별하여 정비를 수행하는 개념이고, CBM+는 기존 CBM의 개념에 잔존유효수명(Remaining Useful Life) 예측 기술이 더해진 개념이다[1]. 무기체계 상태기반정비체계 구축을 위해서는 무기체계의 상태정보 획득을 위해 센서를 설치하고 수집된 센서데이터가 필요하다. 본 논문에서는 다양한 무기체계에 설치된 센서에서 수집된 센서데이터를 효율적이고 효과적으로 관리하기 위한 센서데이터 메타데이터 스키마를 제안한다.

적응형 의사결정 트리와 최단 경로법을 이용한 기계 진단 및 보전 정책 수립 (Machine Diagnosis and Maintenance Policy Generation Using Adaptive Decision Tree and Shortest Path Problem)

  • 백준걸
    • 한국경영과학회지
    • /
    • 제27권2호
    • /
    • pp.33-49
    • /
    • 2002
  • CBM (Condition-Based Maintenance) has increasingly drawn attention in industry because of its many benefits. CBM Problem Is characterized as a state-dependent scheduling model that demands simultaneous maintenance actions, each for an attribute that influences on machine condition. This problem is very hard to solve within conventional Markov decision process framework. In this paper, we present an intelligent machine maintenance scheduler, for which a new incremental decision tree learning method as evolutionary system identification model and shortest path problem as schedule generation model are developed. Although our approach does not guarantee an optimal scheduling policy in mathematical viewpoint, we verified through simulation based experiment that the intelligent scheduler is capable of providing good scheduling policy that can be used in practice.

On condition based maintenance policy

  • Shin, Jong-Ho;Jun, Hong-Bae
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.119-127
    • /
    • 2015
  • In the case of a high-valuable asset, the Operation and Maintenance (O&M) phase requires heavy charges and more efforts than the installation (construction) phase, because it has long usage life and any accident of an asset during this period causes catastrophic damage to an industry. Recently, with the advent of emerging Information Communication Technologies (ICTs), we can get the visibility of asset status information during its usage period. It gives us new challenging issues for improving the efficiency of asset operations. One issue is to implement the Condition-Based Maintenance (CBM) approach that makes a diagnosis of the asset status based on wire or wireless monitored data, predicts the assets abnormality, and executes suitable maintenance actions such as repair and replacement before serious problems happen. In this study, we have addressed several aspects of CBM approach: definition, related international standards, procedure, and techniques with the introduction of some relevant case studies that we have carried out.

APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

  • Kim, Hyeonmin;Na, Man Gyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.737-752
    • /
    • 2014
  • As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

효과적인 건전성 관리를 위한 유도탄 CBM+ 적용 방안 연구 (A Study on Method for Applying CBM+ in Missile for Effective Health Management)

  • 이연호;김성목;김지원;정재우;박정원;김용수
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.294-303
    • /
    • 2024
  • The objective of condition-based maintenance plus(CBM+) is to improve the availability and maintenance efficiency of missiles, bolstering national defense capabilities. This study proposes an application of CBM+ to enhance the reliability and the safety of missiles, which are the devices typically stored for long durations. CBM+ CBM+ does not only contribute to defense capabilities, but it also aims to reduce maintenance costs. This study focuses particularly on the dormant stage of the missile life-cycle, in which various failure modes and environmental impacts on failure mechanisms are investigated. The effectiveness of maintenance strategies and the implementation of CBM+ is evaluated using simulation data.