• Title/Summary/Keyword: Condition recognition

Search Result 812, Processing Time 0.031 seconds

The 3-D Underwater Object Recognition Using Neural Networks and Ultrasonic Sensor Fabricated with 1-3 Type Piezoelectric Composites (1-3형 압전복합체로 제작한 초음파센서와 신경회로망을 이용한 3차원 수중 물체인식)

  • 조현철;이기성
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.324-325
    • /
    • 2001
  • In this study, the characteristics of ultrasonic sensor fabricated with PZT-Polymer 1-3 type composites are investigated. The 3-D Underwater object recognition using the self-made ultrasonic sensor and SOFM neural network is presented. The ultrasonic sensor is satisfied with the required condition of commercial ultrasonic sensor in underwater. The 3-D underwater object recognition for the training data and the testing data are 100[100%], respectively. The experimental results have shown that the ultrasonic sensor fabricated with PZT-Polymer 1-3 type composites can be applied for sonar system.

  • PDF

Condition Monitoring Of Rotating Machine With Mass Unbalance Using Hidden Markov Model (은닉 마르코프 모델을 이용한 질량 편심이 있는 회전기기의 상태진단)

  • Ko, Jungmin;Choi, Chankyu;Kang, To;Han, Soonwoo;Park, Jinho;Yoo, Honghee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.833-834
    • /
    • 2014
  • In recent years, a pattern recognition method has been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov model has recently been used as pattern recognition methods in various fields. In this study, a HMM method for the fault diagnosis of a mechanical system is introduced, and a rotating machine with mass unbalance is selected for fault diagnosis. Moreover, a diagnosis procedure to identity the size of a defect is proposed in this study.

  • PDF

A Study on Pattern Recognition Technology for Inspection Automation of Manufacturing Process based Smart Camera (스마트카메라를 이용한 생산공정의 검사자동화를 위한 패턴인식기술에 관한 연구)

  • Shin, Heang-Bong;Sim, Hyun-Suk;Kang, Un-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • The purpose of this research is to develop the pattern recognition algorithm based on smart camera for inspection automation, and including external surface state of molding parts or optical parts. By performance verification, this development can be applied to establish for existing reflex data because inputting surface badness degree of scratch's standard specification condition directly. And it is pdssible to distinguish from schedule error of badness product and normalcy product within schedule extent after calculating the error comparing actuality measurement reflex data and standard reflex data mutually. The proposed technology cab be applied to test for masearing of the smallest 10 pixel unit. It is illustrated the relibility pf proposed technology by an experiment.

3-D Underwater Object Recognition Using Ultrasonic Transducer Fabricated with Porous Piezoelectric Resonator (다공질 압전 초음파 트랜스튜서를 이용한 3차원 수중 물체인식)

  • 조현철;이수호;박정학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.316-319
    • /
    • 1996
  • In this study, characteristics of ultrasonic transducer fabricated with porous piezoelectric resonator are investigated, 3-D underwater object recognition using the self-made ultrasonic transducer and SOFM(Self-Organizing Feature Map) neural network are presented. The self-made transducer was satisfied the required condition of ultrasonic transducer in water, and the recognition rates for the training data and the testing data were 100 and 95.3% respectively. The experimental results have shown that the ultrasonic transducer fabricated with porous piezoelectric resonator could be applied for sonar system.

  • PDF

A Minimum-Error-Rate Training Algorithm for Pattern Classifiers and Its Application to the Predictive Neural Network Models (패턴분류기를 위한 최소오차율 학습알고리즘과 예측신경회로망모델에의 적용)

  • 나경민;임재열;안수길
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.108-115
    • /
    • 1994
  • Most pattern classifiers have been designed based on the ML (Maximum Likelihood) training algorithm which is simple and relatively powerful. The ML training is an efficient algorithm to individually estimate the model parameters of each class under the assumption that all class models in a classifier are statistically independent. That assumption, however, is not valid in many real situations, which degrades the performance of the classifier. In this paper, we propose a minimum-error-rate training algorithm based on the MAP (Maximum a Posteriori) approach. The algorithm regards the normalized outputs of the classifier as estimates of the a posteriori probability, and tries to maximize those estimates. According to Bayes decision theory, the proposed algorithm satisfies the condition of minimum-error-rate classificatin. We apply this algorithm to NPM (Neural Prediction Model) for speech recognition, and derive new disrminative training algorithms. Experimental results on ten Korean digits recognition have shown the reduction of 37.5% of the number of recognition errors.

  • PDF

Off-line PD Model Classification of Traction Motor Stator Coil Using BP

  • Park Seong-Hee;Jang Dong-Uk;Kang Seong-Hwa;Lim Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.223-227
    • /
    • 2005
  • Insulation failure of traction motor stator coil depends on the continuous stress imposed on it and knowing its insulation condition is an issue of significance for proper safety operation. In this paper, application of the NN (Neural Network) as a scheme of the off-line PD (partial discharge) diagnosis method that occurs at the stator coil of a traction motor was studied. For PD data acquisition, three defective models were made; internal void discharge model, slot discharge model and surface discharge model. PD data for recognition were acquired from a PD detector. Statistical distributions and parameters were calculated to perform recognition between model discharge sources. These statistical distribution parameters are applied to classify PD sources by the NN with a good recognition rate on the discharge sources.

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

Correction of Specular Region on Document Images (문서 영상의 전반사 영역 보정 기법)

  • Simon, Christian;Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.239-240
    • /
    • 2013
  • The quality of document images captured by digital camera might be degraded because of non-uniform illumination condition. The high illumination (glare distortion) affects on the contrast condition of the document images. This condition leads to the poor contrast condition of the text in document image. So, optical character recognition (OCR) system might hardly recognize text in the high illuminated area. The method to increase the contrast condition between text (foreground) and background in high illuminated area is proposed in this paper.

  • PDF

A study on the Recognition of Continuous Digits using Syntactic Analysis and One-Stage DP (구문 분석과 One-Stage DP를 이용한 연속 숫자음 인식에 관한 연구)

  • Ann, Tae-Ock
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.97-104
    • /
    • 1995
  • This paper is a study on the recognition of continuous digits for the implementation of a voice dialing system, and proposes an method of speech recognition using syntactic analysis and One-Stage DP. In order to perform the speech recognition, first of all, we make DMS model by section division algorithm and let continuous digits data be recognized through the proposed One-Stage DP method using syntactic analysis. In this study, 7 continuous digits of 21 kinds which is pronounced by 8 male speakers two or three times, are used. The speaker dependent and speaker independent recognition are performed with the above data by way of the conventional One-Stage DP and the proposed One-Stage DP using syntactic analysis under the condition of laboratory environment. From the recognition experiments, it is shown that the proposed method was better than the established method. And, the recognition accuracy of speaker dependence and independence by the proposed One-Stage DP using syntactic analysis was about 91.7% and 89.7%.

  • PDF

Parameter Considering Variance Property for Speech Recognition in Noisy Environment (잡음환경에서의 음성인식을 위한 변이특성을 고려한 파라메터)

  • Park, Jin-Young;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.469-472
    • /
    • 2005
  • This paper propose about effective speech feature parameter that have robust character in effect of noise in realizing speech recognition system. Established MFCC that is the basic parameter used to ASR(Automatic Speech Recognition) and DCTCs that use DCT in basic parameter. Also, proposed delta-Cepstrum and delta-delta-Cepstrum parameter that reconstruct Cepstrum to have information for variation of speech. And compared recognition performance in using HMM. For dimension reduction of each parameter LDA algorithm apply and compared recognition. Results are presented reduced dimension delta-delta-Cepstrum parameter in using LDA recognition performance that improve more than existent parameter in noise environment of various condition.

  • PDF