• Title/Summary/Keyword: Condition ratings

Search Result 99, Processing Time 0.027 seconds

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

Use of Nondestructive Evaluation Methods in Bridge Management Systems (교량유지관리시스템에 있어서 비파괴 시험의 효율적 활용 방안)

  • 심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1291-1296
    • /
    • 2000
  • A basis for the direct use of data from nondestructive evaluation methods in bridge management systems is presented. Bridge management systems use integer-valued condition ratings to recognize conditions of bridge elements, to model progression of deterioration, and to determine repair needs. Data from nondestructive evaluation methods can inform management systems on the extent of damage, on the initiation of deterioration processes, and on the exposure of bridge elements to aggressive agents. In addition, data obtained through nondestructive evaluation methods allow the formation of models of specific deterioration process. The use of these data in bridge management systems requires redefinition of condition ratings together with the creation of procedures for automated interpretation of data. By these action, nondestructive evaluation methods are directly used to assign condition ratings, and condition ratings are made into terse form of NDE data that are compatible with present day bridge management systems. This paper reports work in progress to strategic use of nondestructive evaluation methods in bridge management system.

A Condition Rating Method of Bridges using an Artificial Neural Network Model (인공신경망모델을 이용한 교량의 상태평가)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • It is increasing annually that the cost for bridge Maintenance Repair & Rehabilitation (MR&R) in developed countries. Based on Intelligent Technology, Bridge Management System (BMS) is developed for optimization of Life Cycle Cost (LCC) and reliability to predict long-term bridge deteriorations. However, such data are very limited amongst all the known bridge agencies, making it difficult to reliably predict future structural performances. To alleviate this problem, an Artificial Neural Network (ANN) based Backward Prediction Model (BPM) for generating missing historical condition ratings has been developed. Its reliability has been verified using existing condition ratings from the Maryland Department of Transportation, USA. The function of the BPM is to establish the correlations between the known condition ratings and such non-bridge factors as climate and traffic volumes, which can then be used to obtain the bridge condition ratings of the missing years. Since the non-bridge factors used in the BPM can influence the variation of the bridge condition ratings, well-selected non-bridge factors are critical for the BPM to function effectively based on the minimized discrepancy rate between the BPM prediction result and existing data (deck; 6.68%, superstructure; 6.61%, substructure; 7.52%). This research is on the generation of usable historical data using Artificial Intelligence techniques to reliably predict future bridge deterioration. The outcomes (Long-term Bridge deterioration Prediction) will help bridge authorities to effectively plan maintenance strategies for obtaining the maximum benefit with limited funds.

Correlation of Single-Number Ratings for Sound Insulation by Floor Impact (바닥충격음 차단성능 단일수치 평가방법별 상관성에 대한 조사연구)

  • 김흥식;김명준;김하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.719-723
    • /
    • 2002
  • The purpose of this study is to suggest the correlation of single-number ratings for sound insulation by floor impact. As a assessment method of impact sound insulation. we selected the IIC contour of ISO, A weighted sound level. Inverse A-weighting curve and L-Index of japanese industrial standard. And we estimated the single-number ratings by application the measured data of impact sound level to each method. The results showed that the coefficients of determination between each two single-number ratings were very high (more than 0.9169). And In the condition of same assessment method, the coefficient of determination for light-weight impact sound was higher than that for heavy-weight impact sound.

  • PDF

Ergonomic evaluation of screw driver-using workstations: Psychophysical approach (스크류 드라이버를 사용하는 작업장의 인간공학적 평가:심리육체적 접근방법)

  • 박희석
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.51-62
    • /
    • 1996
  • This research utilized the psychophysical methodology, where secrw drivers are used, to determine the effects of i) the location and orientation of work objects, and ii) wearing gloves, on ratings of perceived exertion at various body parts. The validity of the psychophysical methodology in determining a preferred work pace was also studied. The subjects drove screws with a screw driver into thick wooden sheet at three vertical and three horizontal locations. They drove serews for 3 minutes at each location and assessed the condition using the psychophysical scale. The results showed that only the vertical location was a significant factor in determining the discomfort ratings. Driving screws at elbow height on the vertical surface and with the lower arm close to the body on the horizontal surface were the work locations with the smallest ratings of perceived discomfort. Wearing gloves had significant effects on reducing the pain of the hand. From the experiment in which a comfortable work pace was identified using 20 minute psychophysical adjustment, it was found that the psychophysical method is sensitive to workers perception of the physical stress when the upper limbs are employed. This was confirmend by the high correlation between the psychophysical results and EMG measurement.

  • PDF

Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method (규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발)

  • Chung, Sehwan;Lim, Soram;Chi, Seokho
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

Effects of Numerical Formats and Frequency ranges on Judgment of Risk and Inference in the Bayesian InferenceTask (숫자양식과 빈도범위가 베이스 추론 과제에서 위험판단과 추론에 미치는 영향)

  • Lee, Hyun-Ju;Lee, Young-Ai
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.3
    • /
    • pp.335-355
    • /
    • 2009
  • We examined risk judgment and the accuracy of inference based on two kinds of probabilities in a Bayesian inference task: the death probability from a disease (base rates) and the probability of having a disease with positive results in the screening test (posterior probabilities). Risk information were presented in either a probability or a frequency format. In Study 1, we found a numerical format effect for both base rate and posterior probability. Participants rated information as riskier and inferred more accurately in the frequency condition than in the probability condition for both base rate and posterior probability. However, there was no frequency range effect, which suggested that the ranges of frequency format did not influence risk ratings. In order to find out how the analytic thought system influences risk ratings, we compared the ratings of a computation condition and those of a no-computation condition and still found the numerical format effect in computation condition. In Study 2, we examined the numerical format effect and frequency range effect in a high and a low probability condition and found the numerical format effect at each probability level. This result suggests that people feel riskier in the frequency format than in the probability format regardless of the base rates and the posterior probability. We also found a frequency range effect only for the low base rate condition. Our results were discussed in terms of the dual process theories.

  • PDF

Comparison of the RMR Ratings by Tunnel Face Mappings and Horizontal Pre-borings at the Fault Zone in a Tunnel (터널 단층대에서 수평시추와 막장관찰에 의한 RMR값의 비교 분석)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.39-46
    • /
    • 2005
  • The RMR ratings, one by horizontal pre-boring in a tunnel and another by tunnel face mapping, are compared at the fault zone in a tunnel. Generally. the horizontal pre-borings were so effective as to forecast reasonably the supporting patterns after tunnel excavation. But the maximum difference in RMR ratings estimated by two methods was about 50 at a certain section of a tunnel. The differences were analyzed on each parameter of the RMR system: the rating differences were 24 in the condition of discontinuities, 15 in the RQD and 13 in the uniaxial compressive strength of rock. To minimize the gap between RMR by pre-borings and by face mappings, it is necessary to select the horizontal pre-boring location where tunnel stability could be critical and to evaluate in detail the sub-parameters of the condition of discontinuities.

A Study on the Interrelationship between the Prediction Error and the Rating's Pattern in Collaborative Filtering

  • Lee, Seok-Jun;Kim, Sun-Ok;Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.659-668
    • /
    • 2007
  • Collaborative filtering approach for recommender systems are now widely applied in e-commerce to assist customers to find their needs from many that are frequently available. this approach makes recommendations for users based on the opinions to similar users in the system. But this approach is opened to users who present their preference to items or acquire the preference information form other users, noise in the system makes significant problem for accurate recommendation. In this paper, we analyze the relationship between the standard deviation of preference ratings for each user and the estimated ratings of them. The result shows that the possibility of the pre-filtering condition which detecting the factor of bad effect on the prediction of user's preference. It is expected that using this result will reduce the possibility of bad effect on recommender systems.

  • PDF