• 제목/요약/키워드: Condition Classification

검색결과 902건 처리시간 0.04초

SVM을 이용한 버터플라이 밸브의 캐비테이션 상태감시 (Cavitation Condition Monitoring of Butterfly Valve Using Support Vector Machine)

  • 황원우;고명환;양보석
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.119-127
    • /
    • 2004
  • Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur. resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic interest and is very importance in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals that are acquired from butterfly valves in the pumping stations and compared the classification success rate with those of self-organizing feature map neural network.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기 (An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation)

  • 김도균;최진영;고정한
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

당뇨 합병증으로 인한 하지 절단술의 위험 인자의 포괄적 분석 (Comprehensive Analysis for Risk Factors of Lower Extremity Amputation as a Treatment of Complicated Diabetic Foot)

  • 정형진;배서영;민병권;박재구;감민철;최지원
    • 대한족부족관절학회지
    • /
    • 제16권4호
    • /
    • pp.257-264
    • /
    • 2012
  • Purpose: The diabetic foot lesions are intractable, and aggravation often leads to amputation. None or minor amputation group was treated debridement or toe amputation and major amputation group was treated Ray, Lisfranc, Chopart, Below Knee and Above Knee amputation. We investigate the risk factors for major limb amputations among patients with diabetic foot lesion. Materials and Methods: The subjects were 73 diabetic foot lesion patients (83 diabetic foot lesions) treated at our department from January 2006 to December 2010. Non or Minor amputation group of 44 cases were treated with debridement or toe amputation. Major amputation group of 39 cases were treated with Ray, Lisfranc, Chopart, below or above Knee amputation. We investigated socioeconomic factors, diabetes mellitus related factors and wound related factors and laboratory factors. Statistical analysis was done by Students t-test, Chi-square test, Mann-Whitney's U test. Results: In our analysis, wound size, wound classification (Wagner classification, Brodsky classification), white blood cell counts, polymorphoneuclear neutrophil percentage, hemoglobin, C-reactive protein and albumin were risk factors for major amputation (p<0.05). Conclusion: Low education level, nutritional condition, premorbid activity level and progressed wound condition were observed in major amputation group compared with non or minor amputation group. In the major amputation group, higher white blood cell count, C-reactive protein level and lower albumin level were observed. Together with maintenance of adequate nutritional condition, early detection of lesions and foot care for early treatment is important. Therefore, active investigation with full risk evaluation of vascular complication is also important.

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사 (Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method)

  • 고국원;조형석;김종형;김성권
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

임상의사결정 향상을 위한 근거 기반 간호과정 시스템 개발-대장암 간호진단을 중심으로- (Development of an Evidence-based Nursing Process System to Improve Clinical Decision Making with Colorectal Cancer Nursing Diagnosis)

  • 박현상;조훈;김화선
    • 한국멀티미디어학회논문지
    • /
    • 제19권7호
    • /
    • pp.1197-1207
    • /
    • 2016
  • The purpose of this study was to develop an evidence-based Nursing Process System on Nursing Diagnosis, Nursing Outcomes, and Nursing Interventions Classification targeting nurse students. We use standard classification-focused research data on the basis of Nursing Diagnosis Classification established by NANDA (North American Nursing Diagnosis Association), NOC (Nursing Outcomes Classification) and NIC (Nursing Interventions Classification) mainly developed by Iowa Sate University. The existing research methods are difficult to be applied the consistent nursing process, since such methods need to repeatedly enter the same nursing process without systematic guidelines. But, this study was coded data of standardized nursing process in accordance with the 10 clinical condition in order to implement the nursing process macro, and developed a system that reflects the needs of nursing educators. Therefore, nurse students can improve clinical decision-making ability, and naturally learn the nursing process through a system developed.

K-means 클러스터링을 이용한 자율학습을 통한 잠재적간 질환 환자의 분류를 위한 계층 정의 (Identifying Classes for Classification of Potential Liver Disorder Patients by Unsupervised Learning with K-means Clustering)

  • 김준범;오교중;오근휘;최호진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.195-197
    • /
    • 2011
  • This research deals with an issue of preventive medicine in bioinformatics. We can diagnose liver conditions reasonably well to prevent Liver Cirrhosis by classifying liver disorder patients into fatty liver and high risk groups. The classification proceeds in two steps. Classification rules are first built by clustering five attributes (MCV, ALP, ALT, ASP, and GGT) of blood test dataset provided by the UCI Repository. The clusters can be formed by the K-mean method that analyzes multi dimensional attributes. We analyze the properties of each cluster divided into fatty liver, high risk and normal classes. The classification rules are generated by the analysis. In this paper, we suggest a method to diagnosis and predict liver condition to alcoholic patient according to risk levels using the classification rule from the new results of blood test. The K-mean classifier has been found to be more accurate for the result of blood test and provides the risk of fatty liver to normal liver conditions.

A Framework for Designing Closed-loop Hand Gesture Interface Incorporating Compatibility between Human and Monocular Device

  • Lee, Hyun-Soo;Kim, Sang-Ho
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.533-540
    • /
    • 2012
  • Objective: This paper targets a framework of a hand gesture based interface design. Background: While a modeling of contact-based interfaces has focused on users' ergonomic interface designs and real-time technologies, an implementation of a contactless interface needs error-free classifications as an essential prior condition. These trends made many research studies concentrate on the designs of feature vectors, learning models and their tests. Even though there have been remarkable advances in this field, the ignorance of ergonomics and users' cognitions result in several problems including a user's uneasy behaviors. Method: In order to incorporate compatibilities considering users' comfortable behaviors and device's classification abilities simultaneously, classification-oriented gestures are extracted using the suggested human-hand model and closed-loop classification procedures. Out of the extracted gestures, the compatibility-oriented gestures are acquired though human's ergonomic and cognitive experiments. Then, the obtained hand gestures are converted into a series of hand behaviors - Handycon - which is mapped into several functions in a mobile device. Results: This Handycon model guarantees users' easy behavior and helps fast understandings as well as the high classification rate. Conclusion and Application: The suggested framework contributes to develop a hand gesture-based contactless interface model considering compatibilities between human and device. The suggested procedures can be applied effectively into other contactless interface designs.